Neutrosophic Data Analytic Hierarchy Process for Multi Criteria Decision Making: Applied to Supply Chain Risk Management
Author
Abstract

Today’s Supply Chains (SC) are engulfed in a maelstrom of risks which arise mainly from uncertain, contradictory, and incomplete information. A decision-making process is required in order to detect threats, assess risks, and implements mitigation methods to address these issues. However, Neutrosophic Data Analytic Hierarchy Process (NDAHP) allows for a more realistic reflection of real-world problems while taking into account all factors that lead to effective risk assessment for Multi Criteria Decision-Making (MCDM). The purpose of this paper consists of an implementation of the NDAHP for MCDM aiming to identifying, ranking, prioritizing and analyzing risks without considering SC’ expert opinions. To that end, we proceed, first, for selecting and analyzing the most 23 relevant risk indicators that have a significant impact on the SC considering three criteria: severity, occurrence, and detection. After that, the NDAHP method is implemented and showcased, on the selected risk indicators, throw an illustrative example. Finally, we discuss the usability and effectiveness of the suggested method for the SCRM purposes.

Year of Publication
2022
Conference Name
2022 International Conference on Advanced Aspects of Software Engineering (ICAASE)
Google Scholar | BibTeX