Fog computing based Distributed Denial of Service Attack Detection Method for Large-Scale Internet of Things
Author
Abstract

Internet of Things (IoT) is encroaching in every aspect of our lives. The exponential increase in connected devices has massively increased the attack surface in IoT. The unprotected IoT devices are not only the target for attackers but also used as attack generating elements. The Distributed Denial of Service (DDoS) attacks generated using the geographically distributed unprotected IoT devices as botnet pose a serious threat to IoT. The large-scale DDoS attacks may arise through multiple low-rate DDoS attacks from geographically distributed, compromised IoT devices. This kind of DDoS attacks are difficult to detect with the existing security mechanisms because of the large-scale distributed nature of IoT. The proposed method provides solution to this problem using Fog computing containing fog nodes which are closer to edge IoT devices. The distributed fog nodes detects the low-rate DDoS attacks from IoT devices before it leads to largescale DDoS attack. The effectiveness analysis of the proposed method proves that the real time detection is practical. The experimental results depicts that the lowrate DDoS attacks are detected at faster rate in fog nodes, hence the large-scale DDoS attacks are detected at early stage to protect from massive attack.

Year of Publication
2023
Date Published
mar
URL
https://ieeexplore.ieee.org/document/10116991
DOI
10.1109/SPIN57001.2023.10116991
Google Scholar | BibTeX | DOI