An XAI Approach to Predictive Analytics of Pancreatic Cancer
Author
Abstract

Despite intensive research, survival rate for pancreatic cancer, a fatal and incurable illness, has not dramatically improved in recent years. Deep learning systems have shown superhuman ability in a considerable number of activities, and recent developments in Artificial Intelligence (AI) have led to its widespread use in predictive analytics of pancreatic cancer. However, the improvement in performance is the result of model complexity being raised, which transforms these systems into “black box” methods and creates uncertainty about how they function and, ultimately, how they make judgements. This ambiguity has made it difficult for deep learning algorithms to be accepted in important field like healthcare, where their benefit may be enormous. As a result, there has been a significant resurgence in recent years of scholarly interest in the topic of Explainable Artificial Intelligence (XAI), which is concerned with the creation of novel techniques for interpreting and explaining deep learning models. In this study, we utilize Computed Tomography (CT) images and Clinical data to predict and analyze pancreatic cancer and survival rate respectively. Since pancreatic tumors are small to identify, the region marking through XAI will assist medical professionals to identify the appropriate region and determine the presence of cancer. Various features are taken into consideration for survival prediction. The most prominent features can be identified with the help of XAI, which in turn aids medical professionals in making better decisions. This study mainly focuses on the XAI strategy for deep and machine learning models rather than prediction and survival methodology.

Year of Publication
2023
Date Published
aug
URL
https://ieeexplore.ieee.org/document/10225991
DOI
10.1109/ICIT58056.2023.10225991
Google Scholar | BibTeX | DOI