Cyber Security Vulnerability Detection Using Natural Language Processing | |
---|---|
Author | |
Abstract |
Cybersecurity is the practice of preventing cyberattacks on vital infrastructure and private data. Government organisations, banks, hospitals, and every other industry sector are increasingly investing in cybersecurity infrastructure to safeguard their operations and the millions of consumers who entrust them with their personal information. Cyber threat activity is alarming in a world where businesses are more interconnected than ever before, raising concerns about how well organisations can protect themselves from widespread attacks. Threat intelligence solutions employ Natural Language Processing to read and interpret the meaning of words and technical data in various languages and find trends in them. It is becoming increasingly precise for machines to analyse various data sources in multiple languages using NLP. This paper aims to develop a system that targets software vulnerability detection as a Natural Language Processing (NLP) problem with source code treated as texts and addresses the automated software vulnerability detection with recent advanced deep learning NLP models. We have created and compared various deep learning models based on their accuracy and the best performer achieved 95\% accurate results. Furthermore we have also made an effort to predict which vulnerability class a particular source code belongs to and also developed a robust dashboard using FastAPI and ReactJS. |
Year of Publication |
2022
|
Date Published |
jun
|
URL |
https://ieeexplore.ieee.org/document/9817336
|
DOI |
10.1109/AIIoT54504.2022.9817336
|
Google Scholar | BibTeX | DOI |