Defending the Cloud: Understanding the Role of Explainable AI in Intrusion Detection Systems | |
---|---|
Author | |
Abstract |
As cloud computing continues to evolve, the security of cloud-based systems remains a paramount concern. This research paper delves into the intricate realm of intrusion detection systems (IDS) within cloud environments, shedding light on their diverse types, associated challenges, and inherent limitations. In parallel, the study dissects the realm of Explainable AI (XAI), unveiling its conceptual essence and its transformative role in illuminating the inner workings of complex AI models. Amidst the dynamic landscape of cybersecurity, this paper unravels the synergistic potential of fusing XAI with intrusion detection, accentuating how XAI can enrich transparency and interpretability in the decision-making processes of AI-driven IDS. The exploration of XAI s promises extends to its capacity to mitigate contemporary challenges faced by traditional IDS, particularly in reducing false positives and false negatives. By fostering an understanding of these challenges and their ram-ifications this study elucidates the path forward in enhancing cloud-based security mechanisms. Ultimately, the culmination of insights reinforces the imperative role of Explainable AI in fortifying intrusion detection systems, paving the way for a more robust and comprehensible cybersecurity landscape in the cloud. |
Year of Publication |
2023
|
Date Published |
nov
|
URL |
https://ieeexplore.ieee.org/document/10475080
|
DOI |
10.1109/SIN60469.2023.10475080
|
Google Scholar | BibTeX | DOI |