Enhancing IoT Security in 6G Environment With Transparent AI: Leveraging XGBoost, SHAP and LIME
Abstract

The integration of IoT with cellular wireless networks is expected to deepen as cellular technology progresses from 5G to 6G, enabling enhanced connectivity and data exchange capabilities. However, this evolution raises security concerns, including data breaches, unauthorized access, and increased exposure to cyber threats. The complexity of 6G networks may introduce new vulnerabilities, highlighting the need for robust security measures to safeguard sensitive information and user privacy. Addressing these challenges is critical for 5G networks massively IoT-connected systems as well as any new ones that that will potentially work in the 6G environment. Artificial Intelligence is expected to play a vital role in the operation and management of 6G networks. Because of the complex interaction of IoT and 6G networks, Explainable Artificial Intelligence (AI) is expected to emerge as an important tool for enhancing security. This study presents an AI-powered security system for the Internet of Things (IoT), utilizing XGBoost, Shapley Additive, and Local Interpretable Model-agnostic explanation methods, applied to the CICIoT 2023 dataset. These explanations empowers administrators to deploy more resilient security measures tailored to address specific threats and vulnerabilities, improving overall system security against cyber threats and attacks.

URL
https://ieeexplore.ieee.org/document/10588922
Google Scholar | BibTeX