Explainable Artificial Intelligence to Enhance Data Trustworthiness in Crowd-Sensing Systems
Author
Abstract

Around the world there has been an advancement of IoT edge devices, that in turn have enabled the collection of rich datasets as part of the Mobile Crowd Sensing (MCS) paradigm, which in practice is implemented in a variety of safety critical applications. In spite of the advantages of such datasets, there exists an inherent data trustworthiness challenge due to the interference of malevolent actors. In this context, there has been a great body of proposed solutions which capitalize on conventional machine algorithms for sifting through faulty data without any assumptions on the trustworthiness of the source. However, there is still a number of open issues, such as how to cope with strong colluding adversaries, while in parallel managing efficiently the sizable influx of user data. In this work we suggest that the usage of explainable artificial intelligence (XAI) can lead to even more efficient performance as we tackle the limitation of conventional black box models, by enabling the understanding and interpretation of a model s operation. Our approach enables the reasoning of the model s accuracy in the presence of adversaries and has the ability to shun out faulty or malicious data, thus, enhancing the model s adaptation process. To this end, we provide a prototype implementation coupled with a detailed performance evaluation under different scenarios of attacks, employing both real and synthetic datasets. Our results suggest that the use of XAI leads to improved performance compared to other existing schemes.

Year of Publication
2023
Date Published
jun
URL
https://ieeexplore.ieee.org/document/10257256
DOI
10.1109/DCOSS-IoT58021.2023.00093
Google Scholar | BibTeX | DOI