Predicting Confidentiality, Integrity, and Availability from SQL Injection Payload
Author
Abstract

SQL Injection has been around as a harmful and prolific threat on web applications for more than 20 years, yet it still poses a huge threat to the World Wide Web. Rapidly evolving web technology has not eradicated this threat; In 2017 51 % of web application attacks are SQL injection attacks. Most conventional practices to prevent SQL injection attacks revolves around secure web and database programming and administration techniques. Despite developer ignorance, a large number of online applications remain susceptible to SQL injection attacks. There is a need for a more effective method to detect and prevent SQL Injection attacks. In this research, we offer a unique machine learning-based strategy for identifying potential SQL injection attack (SQL injection attack) threats. Application of the proposed method in a Security Information and Event Management(SIEM) system will be discussed. SIEM can aggregate and normalize event information from multiple sources, and detect malicious events from analysis of these information. The result of this work shows that a machine learning based SQL injection attack detector which uses SIEM approach possess high accuracy in detecting malicious SQL queries.

Year of Publication
2022
Conference Name
2022 International Conference on Information Management and Technology (ICIMTech)
Google Scholar | BibTeX