Synthesis of Acoustic Wave Multiport Functions by using Coupling Matrix Methodologies
Author
Abstract

Acoustic wave (AW) synthesis methodologies have become popular among AW filter designers because they provide a fast and precise seed to start with the design of AW devices. Nowadays, with the increasing complexity of carrier aggregation, there is a strong necessity to develop synthesis methods more focused on multiport filtering schemes. However, when dealing with multiport filtering functions, numerical accuracy plays an important role to succeed with the synthesis process since polynomial degrees are much higher as compared to the standalone filter case. In addition to polynomial degree, the number set of polynomial coefficients is also an important source of error during the extraction of the circuital elements of the filter. Nonetheless, in this paper is demonstrated that coupling matrix approaches are the best choice when the objective is to synthesize filtering functions with complex roots in their characteristic polynomials, which is the case of the channel polynomials of the multiport device.

Year of Publication
2022
Conference Name
2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM)
Google Scholar | BibTeX