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• “The set of points on the boundary of a system, a 
system element, or an environment where an 
attacker can try to enter, cause an effect on or 
extract data from that system.” (Source: NIST SP 
800-160 Vol.2)

• Knowledge of the Attack Surface allow us to identify 
entry points that enable cyber attacks

• Limitations of this model
• Doesn’t measure the effect of an exploit beyond the 

attack surface
• Doesn’t consider the cascading effects of an exploit

Attack Surface Model: Definition
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Front Entrance

Garage Door

Exploitability = 5

Exploitability = 8

The gold thief analogy: Which entry point will the thief exploit?

Not all Entry Points are Created Equal
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• Can attack surface models accurately assess the impact of different 
attacks? 

Not all Entry Points are Created Equal
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Front Entrance

Garage Door

Exploitability = 5

Exploitability = 8

Attack surface approaches 
would favor hardening the 
garage door, ignoring the 

internal layout of the house

The proposed approaches 
would favor hardening the 

front door, by considering the 
internal layout of the house

Front Entrance

Garage Door

Exploitability = 5

Exploitability = 3



• Are these attack surfaces equivalent? 

• Can current metrics correctly assess the impact?

Limitation of the State of the Art: Example
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The same attack has a higher impact on this network

Compare two networks of a cloud service provider: 



• The “Secure Configurations for the IoT Based
on Optimization and Reasoning on Graphs” 
(SCIBORG) is a system to model, analyze, and
optimize the configuration of complex systems

1. Ingests system requirements, configuration files, 
software documentation, etc. 

2. Builds a queryable, graph-based representation of the
relationships between vulnerabilities, configuration 
parameters, and system components

3. Provides an API to perform a quantitative analysis of 
the security impact of config settings

4. Automatically formulates a constraint satisfaction problem and uses a solver to find optimal parameter values

5. Provides human-readable evidence for the optimality of the selected configuration

The SCIBORG Project
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• Attack Subgraph
• Models dependencies between vulnerabilities

• Dependency Subgraph
• Models functional dependencies between system 

components

• Configuration Subgraph
• Models relationships between configuration 

parameters and configuration constraints

• Edges across Subgraphs
• Configuration Subgraph à Dependency Subgraph
• Configuration Subgraph à Vulnerability Subgraph
• Vulnerability Subgraph à Dependency Subgraph

The SCIBORG Model
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• Metrics are needed to evaluate the nodes and edges 
in the multi-graph

• Exploitation Likelihood 𝝆 𝒗  
• Represents the conditional probability that a vulnerability 
𝑣 will be exploited, if all preconditions are met

• Edge Probability 𝑷𝒓 𝐮, 𝒗
• Represents the relative probability that a vulnerability 𝑣 

will be exploited after exploiting 𝑢 
• Exposure Factor 𝐞𝐟 𝐯, 𝒉

• Represents the relative impact, on a scale from 0 to 1, to a 
component ℎ due to the exploitation of vulnerability 𝑣

Metrics
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• Exploitation Likelihood labels nodes in the vulnerability subgraph

• The exploitation likelihood of a vulnerability 𝑣 is defined as

• 𝑝(𝑣) =
012!". $ % ⋅(012!&.'()*+,$-.,*,$/(%))

22⋅|5678(9)|

where:
• 𝒕(𝒗) is the time since vulnerability 𝑣 was discovered

• More exploits and skills may be available for older vulnerabilities

• 𝑬𝒙𝒑𝒍𝒐𝒊𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝒗) is the CVSS 𝑬𝒙𝒑𝒍𝒐𝒕𝒂𝒊𝒃𝒊𝒍𝒊𝒕𝒚	score of 𝑣 
• Easily exploitable vulnerabilities are more likely to be exploited by the attacker

• 𝑰𝑫𝑺𝑲(𝑽) is the number of known IDS rules associated with 𝑣
• Attackers may not choose vulnerabilities with higher chances of detection (i.e., those with more IDS rules)

• 𝛼, 𝛽, and 𝛾 are tunable parameters to control the influence of the variables

Exploitation Likelihood Metric
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• At every step of an attack, adversaries can choose one of several 
vulnerabilities to exploit next to advance the attack

• All the variables that can influence the attacker’s choice of vulnerabilities 
to exploit have been factored into each vulnerability’s likelihood

• Thus, the edge probability distribution can be computed by normalizing the 
likelihood of the enabled vulnerabilities

• Given an ENABLES edge 𝑢, 𝑣  the probability of exploiting 𝑣 after 𝑢 is

Pr 𝑢, 𝑣 = ! "
∑!∗	$.&. ',!∗ ∈* ! "∗

  

Edge Probability
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• Exposure Factor labels the edges from the nodes in the vulnerability graph to nodes in the 
dependency graph

• The exposure factor of a component ℎ to a vulnerability 𝑣 quantifies the relative damage that 
exploitation of 𝑣 would cause to ℎ

• For a given DEGRADES edge (𝑣, ℎ), the 𝒆𝒙𝒑𝒐𝒔𝒖𝒓𝒆	𝒇𝒂𝒄𝒕𝒐𝒓 is defined as: 

• 𝑒𝑓 𝑣, ℎ = 	012!:⋅,;)-<$ %

2=⋅|567>(%)|

where:
• 𝐢𝐦𝐩𝐚𝐜𝐭 𝒗  is the CVSS 𝑰𝒎𝒑𝒂𝒄𝒕	score of 𝑣 
• 𝑰𝑫𝑺𝒅 𝒗  is the set of deployed IDS rules associated with 𝑣
• 𝛌 and 𝛅 are tunable parameters

Exposure Factor Metric
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• The existence of IDS rules is one of the factors influencing the computation of 
the proposed metrics

• In our implementation, we leverage rules from Snort and Suricata

• We only consider rules that are explicitly mapped to CVE entries and distinguish 
between known and deployed rules

• Known IDS rule. Any IDS rule that is available to the community through publicly 
accessible repositories

• Deployed IDS rule. Any IDS rule 
that is being actively used by a 
deployed IDS

Known vs. Deployed IDS Rules
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Known IDS rules Deployed IDS rules

Found in public repositories Found in installed IDS

Known to the attacker Not known to the attacker

Do not include custom rules Include custom rules

Influence the Exploitation Likelihood Influence the Exposure Factor



• Modeled 5 generations of metrics 
• Refined existing attack surface metrics until all possible scenarios and properties of the system were considered

• Exposed vulnerabilities:
• 𝑉": the set of vulnerabilities exposed on public-facing components 

• 𝒂𝒔𝟏 =	 |𝑉"|

• 𝒂𝒔𝟐 = ∑$∈&< 𝜌 𝑣

• 𝒂𝒔𝟑 = ∑$∈&<∑(∈ (∈)	|,"-./,"0 $,( 	𝜌 𝑣 ⋅ 𝑒𝑓 𝑣, ℎ ⋅ 𝑢 ℎ 	

• 𝒂𝒔𝟒 = ∑$∈&∑(∈ (∈)	|,"-./,"0 $,( 𝜌∗ 𝑣 ⋅ 𝑒𝑓 𝑣, ℎ ⋅ 𝑢 ℎ

• 𝒂𝒗𝒎 = ∑$∈&∑(∈ (∈)	|,"-./,"0 $,( 𝜌∗ 𝑣 ⋅ 𝑒𝑓 𝑣, ℎ ⋅ 𝑢 ℎ + ∑(∗∈4(()𝑢 ℎ∗

Beyond a System’s Attack Surface
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Generation 1 Metrics

• 𝒂𝒔𝟏 =	 |𝑉"|
• Simply counts exposed 

vulnerabilities
• What if we have additional 

information about the 
vulnerabilities?

• Likelihood of vulnerability 
exploit

𝑣! 𝑣# 𝑣$𝑣%𝑣&

ℎ#ℎ!

Scenario A Scenario B
Component

Vulnerability
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Generation 2 Metrics

• Assume we know the 
exploitation likelihood of 
each vulnerability

• Under this assumption, 𝒂𝒔𝟏	is 
not sufficient anymore

• 𝒂𝒔𝟐 = ∑$∈&< 𝜌 𝑣
• What if we have additional 

information on the 
vulnerabilities?

• Exposure factor

𝑣! 𝑣#
𝑣&𝑣'

ℎ#ℎ!

Scenario A Scenario B
Component

Vulnerability

𝜌 = 0.5 𝜌 = 0.8
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𝜌 = 0.5
𝜌 = 0.8



Generation 3 Metrics

• Assume we know the exposure factor of each 
component to vulnerabilities 

• Under this assumption, 𝒂𝒔𝟐 is not sufficient 
anymore

• 𝒂𝒔𝟑 = ∑@∈B! ∑C∈ C∈D	|FGHIJFGK @,C 	𝜌 𝑣 ⋅ 𝑒𝑓 𝑣, ℎ ⋅ 𝑢 ℎ

• What if we have additional information 
about vulnerabilities that can be exploited 
after the exploit of the initial vulnerability?

• Multi-step attacks

𝑣! 𝑣#
𝑣&𝑣'

ℎ#ℎ!

Scenario A Scenario B

𝜌 = 0.5 𝜌 = 0.5

𝑒𝑓 = 0.5𝑒𝑓 = 0.5 𝑒𝑓 = 1𝑒𝑓 = 1
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𝜌 = 0.5
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Generation 4 Metrics

• Assume we have information about non-
exposed vulnerabilities

• Under this assumption 𝒂𝒔𝟑, is not sufficient 
anymore

• Given a non-exposed vulnerability 𝑣 ∈ 𝑉\𝑉", 
we consider its adjusted likelihood

• 𝜌∗ 𝑣 = max
N∈ N∈O	 GPJQRGK(N,@)}

𝜌∗ 𝑢 ⋅ Pr(𝑢, 𝑣)	

• 𝒂𝒔𝟒 = ∑@∈B∑C∈ C∈D	|FGHIJFGK @,C 𝜌∗ 𝑣 ⋅ 𝑒𝑓 𝑣, ℎ ⋅ 𝑢 ℎ

• What if we have additional information 
about components that are dependent on 
the degraded component?
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• Assume we know which components are dependent on 
compromised components

• Under this assumption, 𝒂𝒔𝟒	is not sufficient anymore

Generation 5
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• An attack volume metrics can be defined as 

• where 𝐷↑(ℎ) is the set of components that depend on ℎ, whether directly or 
through a chain of dependencies, and 𝐷↓(ℎ∗) is the set of components that ℎ∗ 
directly depends on 

• The metric computes the cumulative effect of exploiting all vulnerabilities in 
the system

• For each exploit, it considers its impact on the vulnerable component and how such an 
impact propagates through the chains of dependencies

Generation 5 Metrics: Attack Volume Metric
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Types of Experiments
1. Evaluate the practical applicability of AVM to real-world scenarios 
2. Evaluate the effectiveness of AVM
3. Evaluate the scalability of AVM

2 types of datasets
1. Real data – Real data consisting of several testbeds provided by DARPA to all 

performers in the Configuration Security (ConSec) program, 
• e.g., train control systems and satellite systems

2. Synthetic data – Built a tool to generate graphs of various sizes and complexity

Experimental Evaluation
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• To assess SCIBORG’s ability to improve a system’s configuration, we defined 4 scores, 
each calculating the Attack Volume for a given system configuration

• Worst Case Score (𝖶𝖢𝖲): measures the attack volume resulting from relaxing all the testbed 
constraints. This score defines an upper bound on the attack volume

• Current Configuration Score (𝖢𝖢𝖲): measures the attack volume of the testbed’s current 
configuration

• SCIBORG Analysis Score (𝖲𝖠𝖢): measures the attack volume induced by the configuration 
recommended as a result of the SCIBORG analysis

• Operational Constraint Score (𝖮𝖢𝖲):  measures the attack volume induced by the elimination of 
all infeasible security constraints. This score defines a lower bound on the attack volume

• Expected result: 𝖮𝖢𝖲 ≤ 𝖲𝖠𝖢 ≤ 𝖢𝖢𝖲 ≤ 𝖶𝖢𝖲 

Practical Applicability within SCIBORG
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• The table below reports the four scores for different testbeds
• The scores show that the score pattern is consistently satisfied:

• 𝖮𝖢𝖲 ≤ 𝖲𝖠𝖢 ≤ 𝖢𝖢𝖲 ≤ 𝖶𝖢𝖲 
• AVM accurately measures the testbeds’ exposure to cyber attacks

Results
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SAFE TRAINS VSAT-SPOKE VSAT-RING UNIT 
Tests

Operational Constraint Score (OCS) 0 40 3,220 0

SCIBORG Analysis Score (SAC) 0 40 3,220 40

Current Configuration Score (CCS) 7,960 1,280 3,760 120

Worse Case Score (WCS) 27,610 1,280 22,420 160



• The following 5 steps were repeated 
for the 5 scenarios described earlier

1. Generated a set of 𝑛 graphs using a 
baseline configuration (Scenario A)

2. Modified the baseline configuration to 
generate graphs that metrics in the current generation can discriminate, but metrics in 
the previous generation cannot discriminate

3. Generated the second set of 𝑛 graphs using the modified configuration (Scenario B)

4. Computed the average value of the attack volume for each set of graphs
5. Verified if the average attack volume for the second set was larger than the first set

Effectiveness Evaluation
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Scenario A
Average Attack Volume

Scenario B
Average attack Volume

Generation 1 100 140

Generation 2 225 373

Generation 3 844 1,405

Generation 4 1,405 5,218

Generation 5 5,218 31,602



• Experiment 1. For a given value of the number of vulnerabilities per component, the 
computation time grows linearly with the number of components 

• Experiment 2. For a given value of the number of vulnerabilities per component and for a given 
value of the number of enabling vulnerabilities per internal vulnerability, the computation time 
grows linearly with the number of components

Result of the Scalability Evaluation
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Result of Experiment 1 Result of Experiment 2
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• Established the Attack Volume Metric to score and compare complex 
system configurations w.r.t. to their overall vulnerability exposure 

• Results show that AVM can be applied to real-world scenarios 
• Results show that AVM is effective and scalable

• Future work
• Dynamically updating the model to adapt to evolving vulnerability landscapes
• Developing resilience against unknown vulnerabilities

• Reasoning with uncertain or incomplete data

Conclusions
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