
Language Models
for Formal Proof
Talia Ringer
UIUC Computer Science

Proof Assistants

2

3

 Program

Proof Engineer Proof Assistant

Proof Assistants

Specification
✓

✓

✓
 Proof

✓

4

 Program

Proof Engineer Proof Assistant

Proof Assistants

✓

✓

✓
 Proof

✓

Specification

5

 Program

Proof Engineer Proof Assistant

Proof Assistants

✓

✓

✓

✓

Specification

 Proof

6

 Program

Proof Engineer Proof Assistant

Proof Assistants

✓

✓

✓

✓

Specification

 Proof

Then vs. Now

7

8

 Program

Proof Engineer Proof Assistant

✓

✓

✓

✓

Specification

 Proof

Then vs. Now

9

Then vs. Now

Proof

✗

✗

10

Then vs. Now

Proof

✓

✓

11

 Compilers

Operating Systems

 File Systems Web Browsers

 Machine Learning
 Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and Zachary Tatlock (2019),
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102–281.

Then vs. Now

12

 seL4

Proof Engineers Proof Assistant

✓

✓

✓

Then vs. Now

✓

20+ person-years
~1,000,000 LOP

 Confidentiality
 & Integrity

 Proof

Proof automation makes it
easier to develop and
maintain verified systems
using proof assistants.

13

Traditional automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

14

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

15

Best of both worlds?
 + predictable
 + dependable
 + understandable
 + not very limited in scope
 + takes little expertise to extend

16

17

 seL4

Proof Engineers Proof Assistant

✓

✓

✓

Now vs. Future

✓

Not that much
work, lots of help?

 Confidentiality
 & Integrity

 Proof

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

18

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

19

20

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

 Proof Assistants (Part 1 of 5)

 Proof

21

 zip

 Us Proof Assistant

✓

✓

✓

List Zip Preserves Length

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

22

 zip

 Us Proof Assistant

✓

✓

✓

List Zip Preserves Length

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

23

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

24

 zip

 Us

✓

✓

✓

✓

 Proof

 zip preserves
 length

List Zip Preserves Length
 Coq (Translated)

 Proof Assistants (Part 1 of 5)

25

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

26

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

27

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

28

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

 1

 2 3

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

29

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

 1 2 3

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

30

length <T> (l : list <T>) : nat :=
 if l = [] then
 0
 else
 1 + length (tail l)

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

31

length <T> (l : list <T>) : nat :=
 if l = [] then
 0
 else
 1 + length (tail l)

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

32

length <T> (l : list <T>) : nat :=
 if l = [] then
 0
 else
 1 + length (tail l)

List Zip Preserves Length

 1 2 3

 length = 2

 length = 3

 Proof Assistants (Part 1 of 5)

List Zip Preserves Length

33

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

34

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

35

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

36

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

 1

 x

 2

 y

 3

 z

 4

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

37

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

 1

 x

 2

 y

 3

 z

 4

List Zip Preserves Length

(3, z)(1, x) (2, y)

 Proof Assistants (Part 1 of 5)

38

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

 1

 x

 2

 y

 3

 z

 4

List Zip Preserves Length

(3, z)(1, x) (2, y)

 Proof Assistants (Part 1 of 5)

39

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

 1

 x

 2

 y

 3

 z

List Zip Preserves Length

(3, z)(1, x) (2, y)

 Proof Assistants (Part 1 of 5)

40

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

41

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

List Zip Preserves Length

 1

 x

 2

 y

 3

 z

 4

(1, x) (3, z)(2, y)

 Proof Assistants (Part 1 of 5)

42

zip <A, B> (l1 : list <A>) (l2 : list) : list <(A, B)> :=
 if l1 = [] or l2 = [] then
 []
 else
 (head l1, head l2) :: (zip (tail l1) (tail l2))

List Zip Preserves Length

 1

 x

 2

 y

 3

 z

 4

(1, x) (3, z)(2, y)

 Proof Assistants (Part 1 of 5)

List Zip Preserves Length

43

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ <A, B> (l1 : list <A>) (l2 : list),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

44

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ <A, B> (l1 : list <A>) (l2 : list),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

45

 1

 x

 2

 y

 3

 z

List Zip Preserves Length

 length = 3

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ <A, B> (l1 : list <A>) (l2 : list),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

46

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ <A, B> (l1 : list <A>) (l2 : list),
 length l1 = length l2 →
 length (zip l1 l2) = length l1.

47

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 Proof Assistants (Part 1 of 5)

Theorem zip_preserves_length :
 ∀ <A, B> (l1 : list <A>) (l2 : list),
 length (zip l1 l2) = min (length l1) (length l2).

48

 1

 x

 2

 y

 3

 z

(3, z)(1, x) (2, y)

List Zip Preserves Length

 length = 3

 4

 Proof Assistants (Part 1 of 5)

49

 zip

 Us Coq

✓

✓

✓

✓

 Proof

 zip preserves
 length

 Goal

List Zip Preserves Length

 Proof Assistants (Part 1 of 5)

List Zip Preserves Length

50

 zip

 Us Coq

✓

✓

✓

✓

 zip preserves
 length

 Proof

 Goal

 Proof Assistants (Part 1 of 5)

51

 Us Coq

✓

List Zip Preserves Length

Proof
Term

 Goal

Gallina

 Proof Assistants (Part 1 of 5)

52

 Us Coq

✓

List Zip Preserves Length

Proof
Term

Gallina

✗

 Proof Assistants (Part 1 of 5)

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

53

Proof Automation

54Traditional Automation (Part 2 of 5)

Proof Automation*

55Traditional Automation (Part 2 of 5)

56

 zip

 Us Coq

✓

✓

✓

 Proof

 zip preserves
 length

 Goal

Proof Automation*

Traditional Automation (Part 2 of 5)

57

 zip

 Us Coq

✓

✓

✓

 zip preserves
 length

 Goal

Proof Automation*

 Proof

Traditional Automation (Part 2 of 5)

58

 Us Coq

 Tactic

Proof Automation*

 Goal

Traditional Automation (Part 2 of 5)

59

 Us Coq

 Tactic
induction

 Goal

Proof Automation*

Traditional Automation (Part 2 of 5)

60

 Us Coq

 Subgoal

induction
 Tactic

Proof Automation*

 prove the
 base case

Traditional Automation (Part 2 of 5)

61

 Us Coq

reflexivity
 Tactic

 Subgoal

Proof Automation*

 prove the
 base case

Traditional Automation (Part 2 of 5)

62

 Us Coq

 Tactic

 Subgoal

Proof Automation*

reflexivity

 now the
 next case

Traditional Automation (Part 2 of 5)

63

 Us Coq

 Tactic

 Subgoal

Proof Automation*

Traditional Automation (Part 2 of 5)

64

 Us Coq

 Tactic
 Proof
 Script

Proof Automation*

 Subgoal

Traditional Automation (Part 2 of 5)

65

 Us Coq

 Subgoal

 Tactic
 Proof
 Script

Proof Automation*

Traditional Automation (Part 2 of 5)

66

 Us Coq

 Tactic

Proof
Term

Proof Automation*

 Subgoal

Traditional Automation (Part 2 of 5)

67

 Us Coq

 Tactic

Proof
Term ✓

✓

Proof Automation*

 Subgoal

Traditional Automation (Part 2 of 5)

68

 Us Coq

 Type

 Tactic

Proof
Term Γ ⊢ t : T

✓

Proof Automation*

Traditional Automation (Part 2 of 5)

69

 Us Coq

 Tactic

List Zip Preserves Length

Γ ⊢ t : T

Certa
inty

 ✓

✓

Traditional Automation (Part 2 of 5)

70

 Us Coq

Proof
Script

List Zip Preserves Length

Γ ⊢ t : T

Certa
inty

 ✓

✓

Abstra
ctio

n

Traditional Automation (Part 2 of 5)

71

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

Traditional Automation (Part 2 of 5)

72

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

Induction => Induction Principles

Traditional Automation (Part 2 of 5)

73

Abstra
ctio

n

Certa
inty

List Zip Preserves Length

Induction => Induction Principles

Traditional Automation (Part 2 of 5)

Tactic languages
Reflection
Custom tactics
Custom proof modes
Proof procedures
Plugins
Proof repair
Hammers

74

Kinds of Automation

Traditional Automation (Part 2 of 5)

75

Tactic languages
Reflection
Custom tactics
Custom proof modes
Proof procedures
Plugins
Proof repair
Hammers

Kinds of Automation

Traditional Automation (Part 2 of 5)

This automation can do
basically anything, yet still
preserve correctness.

76Traditional Automation (Part 2 of 5)

De Bruijn Criterion

77Traditional Automation (Part 2 of 5)

78

Producing the Proof

Checking the Proof

Traditional Automation (Part 2 of 5)

79

Producing the Proof

Checking the Proof

Traditional Automation (Part 2 of 5)

80

Producing the Proof

Checking the Proof

Search Procedures

Traditional Automation (Part 2 of 5)

81

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Traditional Automation (Part 2 of 5)

82

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

Traditional Automation (Part 2 of 5)

83

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

ChatGPT

Traditional Automation (Part 2 of 5)

Spoiler!

84

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

ChatGPT

Traditional Automation (Part 2 of 5)

85

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

ChatGPT

Small & Human-Readable Logic Checker

Traditional Automation (Part 2 of 5)

86

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

ChatGPT

 Small Logical Kernel

Traditional Automation (Part 2 of 5)

87

 Us Coq

Proof
Script

Γ ⊢ t : T

Certa
inty

 ✓

✓

Abstra
ctio

n

Small Logical Kernel

Traditional Automation (Part 2 of 5)

88

 Us Coq

OCaml

Γ ⊢ t : T

Certa
inty

 ✓

✓

Abstra
ctio

n

Small Logical Kernel

Traditional Automation (Part 2 of 5)

89

 Us Coq

ChatGPT

Γ ⊢ t : T

Certa
inty

 ✓

✓

Abstra
ctio

n

Small Logical Kernel

Traditional Automation (Part 2 of 5)

Spoiler!

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.

90Traditional Automation (Part 2 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK,
your kernel has no bugs, and
you don’t introduce axioms)

91Traditional Automation (Part 2 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
The kernel and specification
are the core trusted pieces,
vetted by humans.

92

Traditional Automation (Part 2 of 5)

Traditional automation:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

93Traditional Automation (Part 2 of 5)

Traditional proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

94Traditional Automation (Part 2 of 5)

95Traditional Automation (Part 2 of 5)Traditional Automation (Part 2 of 5)

Proof Repair

PLDI 2021
ITP 2019

CPP 2018PhD Thesis

96

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

Culprit

Proof Repair

Coq Standard
 Library

Traditional Automation (Part 2 of 5)

You have changed a
datatype, and now the
standard library is broken!

97

97

Proof Repair

Traditional Automation (Part 2 of 5)

You have changed a
datatype, and now the
standard library is broken!

98

451 functions & proofs,
25 seconds

98Traditional Automation (Part 2 of 5)

Proof Repair

list <T> :=
 | [] : list <T>
 | cons : T → list <T> → list <T>

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

99

99Traditional Automation (Part 2 of 5)

Proof Repair

list <T> :=
 | cons : T → list <T> → list <T>
 | [] : list <T>

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

100

100

Proof Repair

Traditional Automation (Part 2 of 5)

list <T> :=
 | cons : T → list <T> → list <T>
 | [] : list <T>

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.

101

101

Proof Repair

Traditional Automation (Part 2 of 5)

Traditional proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

102Traditional Automation (Part 2 of 5)

PUMPKIN Pi supports
any change described
by a type equivalence.

103

103

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

Proof Repair – Predictable

Traditional Automation (Part 2 of 5)

PUMPKIN Pi supports
any change described
by a type equivalence.

104

104

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair – Predictable

 New.list T
 swap

 swap_back

Equivalences

 Old.list T

105

105Traditional Automation (Part 2 of 5)

 New.list T
 swap l

swap_back (swap l)

Equivalences

l :Old.list T

106

106Traditional Automation (Part 2 of 5)

 l :New.list T
swap (swap_back l)

 swap l

Equivalences

Old.list T

107

107Traditional Automation (Part 2 of 5)

 new
 update

 revert

 old

108

Equivalences

108Traditional Automation (Part 2 of 5)

109

 Coq + PUMPKIN

old type new type

✓

Coq old function
 or proof

Equivalences

 new function
 or proof

Traditional Automation (Part 2 of 5)

110

 Coq + PUMPKIN

old type new type

✓

Coq old function
 or proof

Equivalences

 new function
 or proof

Traditional Automation (Part 2 of 5)

111

 Coq + PUMPKIN

old type new type

✓

Coq old function
 or proof

Equivalences

 new function
 or proof

Traditional Automation (Part 2 of 5)

PUMPKIN Pi is
flexible & useful
for real scenarios.

112

112Traditional Automation (Part 2 of 5)

Proof Repair – Dependable

113

Equivalences
are even more expressive
than they may sound.

Traditional Automation (Part 2 of 5)

Proof Repair – Dependable

Adding New Information

114Traditional Automation (Part 2 of 5)

Proof Repair – Dependable

Traditional proof repair:
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

115Traditional Automation (Part 2 of 5)

Traditional proof repair:
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

116Traditional Automation (Part 2 of 5)

Transport: Rewriting
across Equivalences

117

The Univalent Foundations Program. 2013. Homotopy
Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair – Understandable

Transport as a
Proof Term Transformation

118Traditional Automation (Part 2 of 5)

Proof Repair – Understandable

For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)

119

Traditional Automation (Part 2 of 5)

Proof Repair – Understandable

Traditional proof repair:
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

120Traditional Automation (Part 2 of 5)

121Traditional Automation (Part 2 of 5)Traditional Automation (Part 2 of 5)

Proof Repair – Limited Scope

Under Submission

 two list queue
 ?

 ?

Quotient Type Equivalences

 one list queue

122

122Traditional Automation (Part 2 of 5)

Traditional proof repair:
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

123Traditional Automation (Part 2 of 5)

One PhD student,
one undergraduate,
one advisor,
2.5 years.
Is this sustainable?

124

Traditional Automation (Part 2 of 5)

Proof Repair – Hard to Extend

One PhD student,
one undergraduate,
one advisor,
2.5 years.
Is this sustainable?

125

Traditional Automation (Part 2 of 5)

Proof Repair – Hard to Extend

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

126

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

127LM-Based Automation (Part 3 of 5)

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Big Interest

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

First Project: Passport

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

Addition of real
numbers is
commutative

forall r1 r2: R,
Rplus r1 r2 = Rplus r2 r1

Next Tactic

LM-Based Automation (Part 3 of 5)

First Project: Passport

Category Vocabulary
Indexing

Subword Sequence
Modeling

Path Elaboration

forall r1 r2: R,
Rplus r1 r2 = Rplus r2 r1

LM-Based Automation (Part 3 of 5)

First Project: Passport

Next TacticProof State

Core Model

100101110100
011001001101

Encoded
Proof State

LM-Based Automation (Part 3 of 5)

First Project: Passport

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

133LM-Based Automation (Part 3 of 5)

First Project: Passport

● Yang and Deng 2019
● Mathematical formalizations, proven correct

programs, and Coq automation libraries
● 123 open-source Coq projects
● Trained on 97 projects (57,719 theorems)
● Tested on 26 projects (10,782 theorems)

134

CoqGym

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope

We can prove 45% more theorems than before!

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope

Diversity brings even higher returns!
64% more theorems than the baseline!

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope

137

LM-Based Automation (Part 3 of 5)

First Project: Passport – Easy to Extend
● Some easy Python scripts on top of

someone else’s existing project
● Parallelized work for different extensions

between me and five other authors
● Undergraduate implemented most

challenging extension in an order of weeks
● Scripts were simple and fun enough that I

got excited when writing one in between
drafting thesis chapters, ran into a couch,
and broke my big toe

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

138LM-Based Automation (Part 3 of 5)

First Project: Passport

139

LM-Based Automation (Part 3 of 5)

First Project: Passport – Confusion
● Somehow, the name of the user running the

training script impacted the file order, which
impacted the results of training a model on
identical data in an identical way

● We found a nondeterminism bug in Pytorch
● Some combinations of extensions worked

mysteriously poorly, even though all
together they helped

● Apparently this is just life with even small
LMs? Is this life now? Help?

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

More in the Paper!

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Since Then

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

https://proofster.cs.umass.edu/

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

ESEC/FSE 2023
Distinguished Paper

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Third Project: PRISM

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ITP 2023

● Dataset for proof repair models for Coq
● Actual proof repairs by proof engineers
● Collaboration with Radiance
● Massive infrastructure undertaking

○ Building many different projects
○ … with many different Coq versions
○ … for many different commits
○ … and aligning data across commit pairs

● WIP Training Repair Models

LM-Based Automation (Part 3 of 5)

Third Project: PRISM

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

ITP 2023

ESEC/FSE 2023
Distinguished Paper

● Using an LLM, one could, conceivably,
synthesize entire proofs at once.

● Collaborating with Google, we fine-tuned the
Minerva model to synthesize proofs in
Isabelle/HOL

● Evaluated on PISA dataset (theorems in
Isabelle/HOL)

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

● Baldur (without repair) can synthesize whole
proofs for 47.9% of the theorems, whereas
search-based approaches prove 39.0%.

● Baldur can repair its own erroneous proof
attempts using the error message from the
proof assistant, proving another 1.5%.

● Diversity continues to help. Together with
Thor, a tool that combines a model, search,
and a hammer, Baldur can prove 65.7%.

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

More in the Papers

TOPLAS Vol. 45, Issue 2:
No. 12, pp 1-30, 2023

Language models:
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

152LM-Based Automation (Part 3 of 5)

153

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

LMs

 Small Logical Kernel

LM-Based Automation (Part 3 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
But boy does this make the
development process suck.

154LM-Based Automation (Part 3 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
But boy does this make the
development process suck.

155LM-Based Automation (Part 3 of 5)

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK,
your kernel has no bugs, and
you don’t introduce axioms)

156

Help at Every Stage

LM-Based Automation (Part 3 of 5)

Spoiler!

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

157

158

Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

LMs

 Small Logical Kernel

 Best of Both Worlds (Part 4 of 5)

Already Neurosymbolic

But we want even more of
the benefits of both kinds of
automation.

159 Best of Both Worlds (Part 4 of 5)

Observation: We can do
fairly well sometimes
without search. Maybe we
can use search at a higher
level than before and get
further returns?

160 Best of Both Worlds (Part 4 of 5)

One idea: Move the search
process up in abstraction.

161 Best of Both Worlds (Part 4 of 5)

One idea: Move the search
process up in abstraction.

162 Best of Both Worlds (Part 4 of 5)

163 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Proof Search

164 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Conversational Action Search

AITP 2023

165 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

166 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

167 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

$$$

168 Best of Both Worlds (Part 4 of 5) Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Prove Theorem

Look Up
Definition

Write Proof

Revise Proof

Run Premise
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size

Promising Results

169 Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Observation: Diversity in
models helps, and diversity
in techniques appears to
help, too. Let’s keep taking
advantage of that.

170 Best of Both Worlds (Part 4 of 5)

Soon: Best of both worlds
for proof repair, too.

171 Best of Both Worlds (Part 4 of 5)

1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities

172

So far I’ve assumed the
specification already exists.

173 Opportunities (Part 5 of 5)

What if LMs can help people
specify software too? This is
risky, but promising.

174 Opportunities (Part 5 of 5)

What if LMs can help people
specify software too? This is
risky, but promising.

175 Opportunities (Part 5 of 5)

176 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

 Proof

177 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

 Proof

178 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

 Proof

Help at Every Stage

179 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

 Specification

✓

Help at Every Stage

 Proof

180 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

✓

Help at Every Stage

 Proof

 Specification

181 Opportunities (Part 5 of 5)

 Program

 Proof Engineer Proof Assistant

✓

✓

✓

✓

Help at Every Stage

 Proof

 Specification

182 Opportunities (Part 5 of 5)

 Proof Engineer Proof Assistant

✓

✓

✓

✓

Help at Every Stage

 Proof

 Specification

 Program

183 Opportunities (Part 5 of 5)

 Proof Engineer Proof Assistant

✓

✓

✓

✓

Help at Every Stage

 Proof

 Specification

 Program

184 Opportunities (Part 5 of 5)

 Proof Engineer Proof Assistant

✓

✓

✓

✓

Help at Every Stage

 Proof

 Specification

 Program

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK,
your kernel has no bugs, and
you don’t introduce axioms)

185 Opportunities (Part 5 of 5)

Help at Every Stage

With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK,
your kernel has no bugs, and
you don’t introduce axioms)

186 Opportunities (Part 5 of 5)

Help at Every Stage

Key Challenge:
There is no oracle for a
specification!

187 Opportunities (Part 5 of 5)

Key Challenge:
What tools can best help
users make sense of
generated specifications?
What information presented
in what ways best helps
users ensure that they
match their intentions?

188 Opportunities (Part 5 of 5)

189

 Compilers

Operating Systems

 File Systems Web Browsers

 Machine Learning
 Systems Quantum Optimizers

More Trustworthy Software

Key Challenge:
What tools can best help
users make sense of
generated specifications?
What information presented
in what ways best helps
users ensure that they
match their intentions?

190

