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     Compilers

Operating Systems

   File Systems Web Browsers

     Machine Learning
              Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and Zachary Tatlock (2019), 
QED at Large: A Survey of Engineering of Formally Verified Software, Foundations 
and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102–281.
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Proof automation makes it
easier to develop and 
maintain verified systems 
using proof assistants. 
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Traditional automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend
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Best of both worlds?  
 + predictable
 + dependable
 + understandable
 + not very limited in scope
 + takes little expertise to extend
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Theorem zip_preserves_length : 
  ∀ <A, B> (l1 : list <A>) (l2 : list <B>),  
    length l1 = length l2 → 
    length (zip l1 l2) = length l1.
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Theorem zip_preserves_length : 
  ∀ <A, B> (l1 : list <A>) (l2 : list <B>),  
    length (zip l1 l2) = min (length l1) (length l2).
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Tactic languages
Reflection
Custom tactics
Custom proof modes
Proof procedures
Plugins
Proof repair
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This automation can do
basically anything, yet still 
preserve correctness.
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De Bruijn Criterion

77Traditional Automation (Part 2 of 5)
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK, 
your kernel has no bugs, and 
you don’t introduce axioms)

91Traditional Automation (Part 2 of 5)



With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
The kernel and specification
are the core trusted pieces,
vetted by humans.
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Traditional Automation (Part 2 of 5)



Traditional automation:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Traditional proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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Proof Repair

PLDI 2021
ITP 2019

CPP 2018PhD Thesis



96

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

New
Program

New
Specification

New
Proof

Culprit

Proof Repair

Coq Standard    
      Library

Traditional Automation (Part 2 of 5)



You have changed a
datatype, and now the 
standard library is broken!
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Proof Repair
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You have changed a
datatype, and now the 
standard library is broken!
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451 functions & proofs, 
25 seconds

98Traditional Automation (Part 2 of 5)

Proof Repair



list <T> :=
  | [ ] : list <T>
  | cons : T → list <T> → list <T>

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.
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Repair Module Old.list New.list in StdLib.
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list <T> :=
  | cons : T → list <T> → list <T>
  | [ ] : list <T>

(* Repair all 451 functions & proofs: *)
Repair Module Old.list New.list in StdLib.
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Proof Repair
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Traditional proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend
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PUMPKIN Pi supports
any change described
by a type equivalence.

103

103

The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

Proof Repair – Predictable

Traditional Automation (Part 2 of 5)



PUMPKIN Pi supports
any change described
by a type equivalence.
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104

The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair – Predictable
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               l :New.list T
swap (swap_back l)

    swap l

Equivalences

Old.list T
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Equivalences

108Traditional Automation (Part 2 of 5)
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PUMPKIN Pi is 
flexible & useful 
for real scenarios.

112
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Proof Repair – Dependable
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Equivalences
are even more expressive
than they may sound.

Traditional Automation (Part 2 of 5)

Proof Repair – Dependable



Adding New Information

114Traditional Automation (Part 2 of 5)

Proof Repair – Dependable



Traditional proof repair:  
 + predictable
 + dependable
 + understandable
 - limited in scope
 - takes expertise to extend

115Traditional Automation (Part 2 of 5)



Traditional proof repair:  
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

116Traditional Automation (Part 2 of 5)



Transport: Rewriting
across Equivalences

117

The Univalent Foundations Program. 2013. Homotopy 
Type Theory: Univalent Foundations of Mathematics. 
Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair – Understandable



Transport as a
Proof Term Transformation

118Traditional Automation (Part 2 of 5)

Proof Repair – Understandable



For type nerds:
Deconstruct Equivalence
(Lambek’s Theorem)
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Traditional Automation (Part 2 of 5)

Proof Repair – Understandable



Traditional proof repair:  
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

120Traditional Automation (Part 2 of 5)



121Traditional Automation (Part 2 of 5)Traditional Automation (Part 2 of 5)

Proof Repair – Limited Scope

Under Submission



               two list queue
       ?

         ?

Quotient Type Equivalences

 one list queue
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Traditional proof repair:  
 + predictable
 + dependable
 + understandable* (for type nerds)
 - limited in scope
 - takes expertise to extend

123Traditional Automation (Part 2 of 5)



One PhD student,
one undergraduate,
one advisor,
2.5 years.
Is this sustainable?
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Traditional Automation (Part 2 of 5)

Proof Repair – Hard to Extend



One PhD student,
one undergraduate,
one advisor,
2.5 years.
Is this sustainable?
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Traditional Automation (Part 2 of 5)

Proof Repair – Hard to Extend



1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities
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Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

127LM-Based Automation (Part 3 of 5)



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Big Interest

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

First Project: Passport

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023



Addition of real 
numbers is 
commutative

forall r1 r2: R, 
Rplus r1 r2 = Rplus r2 r1

Next Tactic

LM-Based Automation (Part 3 of 5)

First Project: Passport



Category Vocabulary 
Indexing

Subword Sequence 
Modeling

Path Elaboration

forall r1 r2: R, 
Rplus r1 r2 = Rplus r2 r1

LM-Based Automation (Part 3 of 5)

First Project: Passport



Next TacticProof State

Core Model

100101110100
011001001101

Encoded 
Proof State

LM-Based Automation (Part 3 of 5)

First Project: Passport



Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

133LM-Based Automation (Part 3 of 5)

First Project: Passport



● Yang and Deng 2019
● Mathematical formalizations, proven correct 

programs, and Coq automation libraries
● 123 open-source Coq projects
● Trained on 97 projects (57,719 theorems) 
● Tested on 26 projects (10,782 theorems)

134

CoqGym

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope



We can prove 45% more theorems than before!

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope



Diversity brings even higher returns! 
64% more theorems than the baseline!

LM-Based Automation (Part 3 of 5)

First Project: Passport – Big Scope



137

LM-Based Automation (Part 3 of 5)

First Project: Passport – Easy to Extend
● Some easy Python scripts on top of 

someone else’s existing project
● Parallelized work for different extensions 

between me and five other authors
● Undergraduate implemented most 

challenging extension in an order of weeks
● Scripts were simple and fun enough that I 

got excited when writing one in between 
drafting thesis chapters, ran into a couch, 
and broke my big toe



Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend

138LM-Based Automation (Part 3 of 5)

First Project: Passport
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LM-Based Automation (Part 3 of 5)

First Project: Passport – Confusion
● Somehow, the name of the user running the 

training script impacted the file order, which 
impacted the results of training a model on 
identical data in an identical way

● We found a nondeterminism bug in Pytorch 
● Some combinations of extensions worked 

mysteriously poorly, even though all 
together they helped

● Apparently this is just life with even small 
LMs? Is this life now? Help?



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

More in the Paper!

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023
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ITP 2023
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LM-Based Automation (Part 3 of 5)

Since Then

TOPLAS Vol. 45, Issue 2:   
No. 12, pp 1-30, 2023



ESEC/FSE 2023
Distinguished Paper

ITP 2023

ICSE Demo 2023

LM-Based Automation (Part 3 of 5)

Second Project: Proofster
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https://proofster.cs.umass.edu/ 
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● Dataset for proof repair models for Coq
● Actual proof repairs by proof engineers
● Collaboration with Radiance
● Massive infrastructure undertaking

○ Building many different projects
○ … with many different Coq versions
○ … for many different commits
○ … and aligning data across commit pairs

● WIP Training Repair Models
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● Using an LLM, one could, conceivably, 
synthesize entire proofs at once.

● Collaborating with Google, we fine-tuned the 
Minerva model to synthesize proofs in 
Isabelle/HOL

● Evaluated on PISA dataset (theorems in 
Isabelle/HOL)
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● Baldur (without repair) can synthesize whole 
proofs for 47.9% of the theorems, whereas 
search-based approaches prove 39.0%.

● Baldur can repair its own erroneous proof 
attempts using the error message from the 
proof assistant, proving another 1.5%. 

● Diversity continues to help. Together with 
Thor, a tool that combines a model, search, 
and a hammer, Baldur can prove 65.7%.
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Language models:  
 - unpredictable
 - not dependable
 - not understandable
 + not very limited in scope
 + takes little expertise to extend
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Producing the Proof

Checking the Proof

Search Procedures

Domain-Specific Heuristics

Proof Transformations

LMs

                    Small Logical Kernel
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
But boy does this make the 
development process suck.
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK, 
your kernel has no bugs, and 
you don’t introduce axioms)
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Help at Every Stage
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1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities
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Search Procedures

Domain-Specific Heuristics

Proof Transformations
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                    Small Logical Kernel

    Best of Both Worlds (Part 4 of 5)

Already Neurosymbolic



But we want even more of 
the benefits of both kinds of 
automation.

159    Best of Both Worlds (Part 4 of 5)



Observation: We can do 
fairly well sometimes 
without search. Maybe we 
can use search at a higher 
level than before and get 
further returns?
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One idea: Move the search 
process up in abstraction.
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Conversational Action Search

Prove Theorem

Look Up 
Definition

Write Proof

Revise Proof

Run Premise 
Selection

Write Proof

QEDInvoke Critic

$$$ Context Size



Promising Results
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Conversational Action Search



Observation: Diversity in 
models helps, and diversity 
in techniques appears to 
help, too. Let’s keep taking 
advantage of that.
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Soon: Best of both worlds 
for proof repair, too.
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1. Proof Assistants
2. Traditional Automation
3. LM-Based Automation
4. Best of Both Worlds
5. Opportunities
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So far I’ve assumed the 
specification already exists.
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What if LMs can help people 
specify software too? This is 
risky, but promising. 
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK, 
your kernel has no bugs, and 
you don’t introduce axioms)
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With de Bruijn, as long as
you don’t touch the kernel,
your automation is safe.*
(If your specification is OK, 
your kernel has no bugs, and 
you don’t introduce axioms)
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Help at Every Stage



Key Challenge: 
There is no oracle for a 
specification!
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Key Challenge: 
What tools can best help 
users make sense of 
generated specifications? 
What information presented 
in what ways best helps 
users ensure that they 
match their intentions?
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     Compilers

Operating Systems

   File Systems Web Browsers

     Machine Learning
              Systems Quantum Optimizers

More Trustworthy Software



Key Challenge: 
What tools can best help 
users make sense of 
generated specifications? 
What information presented 
in what ways best helps 
users ensure that they 
match their intentions?
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