Language Models
 for Formal Proof

Talia Ringer
UIUC Computer Science

Proof Assistants

Proof Assistants

Proof Engineer
Proof Assistant

Then vs. Now

Then vs. Now

Proof Engineer

Proof Assistant

Then vs. Now

Then vs. Now

Then vs. Now

Compilers

Machine Learning Systems

File Systems

Web Browsers

Operating Systems Quantum Optimizers

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric and Zachary Tatlock (2019), QED at Large: A Survey of Engineering of Formally Verified Software, Foundations and Trends in Programming Languages: Vol. 5, No. 2-3, pp 102-281.

Then vs. Now

20+ person-years
 ~1,000,000 LOP

Proof Engineers
Proof Assistant

Proof automation makes it easier to develop and maintain verified systems using proof assistants.

Traditional automation: + predictable

+ dependable
+ understandable
- limited in scope
- takes expertise to extend

Language models:

- unpredictable
- not dependable
- not understandable
+ not very limited in scope
+ takes little expertise to extend

Best of both worlds?

+ predictable
+ dependable
+ understandable
+ not very limited in scope
+ takes little expertise to extend

Now vs. Future

Not that much work, lots of help?

Proof Engineers Proof Assistant

1. Proof Assistants 2. Traditional Automation 3. LM-Based Automation 4. Best of Both Worlds 5. Opportunities
2. Proof Assistants
3. Traditional Automation
4. LM-Based Automation 4. Best of Both Worlds 5. Opportunities

Proof Engineer
 Proof Assistant

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Us
Proof Assistant

List Zip Preserves Length

Us
Proof Assistant

List Zip Preserves Length

list <T> :=
| []: list <T>
| cons : T \rightarrow list <T> \rightarrow list <T>

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

list <T> :=
| [] : list <T>
| cons : T \rightarrow list <T> \rightarrow list <T>

List Zip Preserves Length

list <T> :=
| [] : list <T>
| cons : $T \rightarrow$ list $<T>\rightarrow$ list $<T>$

List Zip Preserves Length

list <T> :=
| [] : list <T>
| cons : $\mathbf{T} \rightarrow$ list $<T>\rightarrow$ list $<T>$

List Zip Preserves Length

list <T> :=
| [] : list <T>
| cons : $\mathrm{T} \rightarrow$ list $<\mathrm{T}>\rightarrow$ list $<\mathrm{T}>$

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

```
length <T> (I : list <T>) : nat :=
    if l= [] then
    0
    else
    1 + length (tail I)
```


Proof Assistants (Part 1 of 5)

List Zip Preserves Length

length <T> (I : list <T>) : nat := if $\mathrm{I}=[$] then
0
else
1 + length (tail I)

List Zip Preserves Length

```
length <T> (I : list <T>) : nat :=
    if I = [ ] then
    0
    else
    1 + length (tail I)
```


length = 2

length = 3
Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Us Coq

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

```
zip <A, B> (l1 : list <A>) (I2 : list <B>) : list <(A, B)> :=
    if IT = [] or l2 = [ ] then
        []
    else
    (head I1, head I2) : (zip (tail I1) (tail I2))
```


List Zip Preserves Length

```
zip <A, B> (l1 : list <A>) (l2 : list <B>) : list <(A, B)> :=
    if I1 = [] or l2 = [] then
    []
    else
    (head I1, head I2) :: (zip (tail I1) (tail I2))
```


List Zip Preserves Length

```
zip <A, B> (11 : list <A>) (I2 : list <B>) : list <(A, B)> :=
    if l1 = [] or l2 = [] then
    []
    else
    (head I1, head I2) :: (zip (tail I1) (tail I2))
```


Proof Assistants (Part 1 of 5)

List Zip Preserves Length

```
zip <A, B> (11 : list <A>) (I2 : list <B>) : list <(A, B)> :=
    if l1 = [] or l2 = [] then
    []
    else
    (head I1, head I2) : (zip (tail I1) (tail I2))
```


Proof Assistants (Part 1 of 5)

List Zip Preserves Length

```
zip <A, B> (11 : list <A>) (I2 : list <B>) : list <(A, B)> :=
    if l1 = [] or l2 = [] then
    []
    else
```

 (head I1, head I2) : : (zip (tail I1) (tail I2))

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

```
zip <A, B> (11 : list <A>) (I2 : list <B>) : list <(A, B)> :=
    if l1 = [] or l2 = [] then
    []
    else
```

 (head I1, head I2) : : (zip (tail I1) (tail I2))

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

zip <A, B> (I1 : list <A>) (l2 : list) : list < (A, B)> := if I1 = [] or I2 = [] then
[]
else
(head I1, head I2) $::($ zip (tail I1) (tail I2))

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

zip <A, B> (11 : list <A>) $(12$: list) : list < $(A, B)>:=$ if I1 = [] or I2 = [] then
[]
else
(head I1, head I2) :: (zip (tail I1) (tail I2))

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

zip <A, B> (l1 : list <A>) (12 : list) : list < $(A, B)>:=$ if I1 = [] or l2 = [] then
[]
else
(head I1, head I2) :: (zip (tail I1) (tail I2))

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

List Zip Preserves Length

Theorem zip_preserves_length :
$\forall<A, B>(11:$ list <A>) $(12:$ list),
length $11=$ length $12 \rightarrow$
length (zip I1 I2) = length I1.

List Zip Preserves Length

Theorem zip_preserves_length :
$\forall<A, B>(11:$ list <A>) (l2 : list),
length 11 = length $12 \rightarrow$
length (zip I1 I2) = length I1.

length = 3

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Theorem zip_preserves_length :
$\forall<A, B>(11$: list <A>) (12 : list),
length $\mathrm{I} 1=$ length $\mathrm{I} 2 \rightarrow$
length (zip I1 I2) = length I1.

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Theorem zip_preserves_length :
$\forall<A, B>(11$: list <A>) (12 : list), length $11=$ length $12 \rightarrow$ length (zip I1 I2) = length I1.

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Theorem zip_preserves_length :
$\forall<A, B>(11$: list <A>) (12 : list), length (zip I1 I2) = min (length I1) (length I2).

List Zip Preserves Length

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Proof Assistants (Part 1 of 5)

List Zip Preserves Length

Proof Assistants (Part 1 of 5)

1. Proof Assistants 2. Traditional Automation 3. LM-Based Automation 4. Best of Both Worlds 5. Opportunities

Traditional Automation (Part 2 of 5)

車
 Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

Proof Automation*

Traditional Automation (Part 2 of 5)

List Zip Preserves Length

Traditional Automation (Part 2 of 5)

List Zip Preserves Length

Us

\section*{| Proof |
| :--- |
| Script | | Proof |
| :--- |
| Script |}

0

List Zip Preserves Length

List Zip Preserves Length

Traditional Automation (Part 2 of 5)

List Zip Preserves Length


```
    list_rect' (fun ( }\mp@subsup{l}{1}{}\mathrm{ : list T T ) => ...)
        (fun (l2 : list T2) _ => eq_refl)}\mp@subsup{}{2}{
```



```
            list_rect' (fun ( }\mp@subsup{l}{2}{}\mathrm{ : list T T ) => ...)
            (fun (H : ...) => eq_sym H)}\mp@subsup{}{}{4
            (fun (t2 : T T ) (tl 2 : list T2) (IHtl2 : ...) =>
            fun (H : ...) => eq_rect_r ... eq_refl (IHtl _ ...)}\mp@subsup{}{}{5}\mathrm{ )
            12}\mp@subsup{}{}{3}\mathrm{ )
```

Kinds of Automation Tactic languages Reflection Custom tactics Custom proof modes Proof procedures Plugins Proof repair Hammers

Traditional Automation (Part 2 of 5)

Kinds of Automation Tactic languages Reflection
Custom tactics
Custom proof modes
Proof procedures
Plugins
Proof repair
Hammers

Traditional Automation (Part 2 of 5)

This automation can do basically anything, yet still preserve correctness.

Traditional Automation (Part 2 of 5)

De Bruljn Criterion

Traditional Automation (Part 2 of 5)

Checking the Proof

Producing the Proof

Traditional Automation (Part 2 of 5)

Checking the Proof

Producing the Proof

Traditional Automation (Part 2 of 5)

Checking the Proof

Search Procedures

Producing the Proof

Traditional Automation (Part 2 of 5)

Checking the Proof

Search Procedures
Domain-Specific Heuristics

Producing the Proof

Traditional Automation (Part 2 of 5)

Checking the Proof

Search Procedures
Domain-Specific Heuristics
Proof Transformations

Producing the Proof

Traditional Automation (Part 2 of 5)

Checking the Proof

Search Procedures

Producing the Proof chatçT

Traditional Automation (Part 2 of 5)

Checking the Proof

Search Procedures

Domain-Specific Heuristics
Proof Transformations
Producing the Proof chatcept

Traditional Automation (Part 2 of 5)

Checking the Proof

Small \& Human-Readable Logic Checker

Search Procedures

Domain-Specific Heuristics
Proof Transformations
Producing the Proof chatcept

Traditional Automation (Part 2 of 5)

Checking the Proof

Small Logical Kernel

Search Procedures

Domain-Specific Heuristics
Proof Transformations
Producing the Proof chatcep

Traditional Automation (Part 2 of 5)

Small Logical Kernel

Us

Proof
Script Proof
Script

Small Logical Kernel

Us

Coq

Traditional Automation (Part 2 of 5)

Small Logical Kernel

Traditional Automation (Part 2 of 5)

With de Bruijn, as long as you don't touch the kernel, your automation is safe.

Traditional Automation (Part 2 of 5)

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* (If your specification is OK, your kernel has no bugs, and you don't introduce axioms) Traditional Automation (Part 2 of 5)

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* The kernel and specification are the core trusted pieces, vetted by humans.

Traditional Automation (Part 2 of 5)

Traditional automation: + predictable

+ dependable
+ understandable
- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Traditional proof repair: + predictable + dependable + understandable

- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Proof Repair

Ornaments for Proof Reuse in Coq

Talia Ringer
University of Washington, USA
tringer@cs.washington.edu
Nathaniel Yazdani
University of Washington, USA
nyazdani@cs.washington.edu

John Leo

Halfaya Research, USA
leo@halfaya.org

Dan Grossman

University of Washington, USA
djg@cs.washington.edu

__ Abstract

Ornaments express relations between inductive types with the same in implement fully automatic proof reuse for a particular class of ornaments in how such a tool can give programmers the rewards of using indexed inductive away many of the costs. The plugin works directly on Coq code; it is the f for a non-embedded dependently typed language. It is also the first tool to ornaments: To lift a function or proof, the user must provide only the sour type, and the source function or ornaments, our approach produces i $1 P 2019$
of the mati
to proof reuse in Coq.

PROOF REPAIR

Talia Ringer
Chair of the Supervisory Committee:
Dan Grossman
Computer Science \& Engineering

The days of verifying only toy programs are long gone. The last two decades have marked a new era of verification at sci guarantees to large and critical systems-an era Proof engineering is for verified systems what soft for unverified systems. Still, while proof engineer engineering-is about both development and maint engineering technologies so far have focused on d it comes to maintaining these systems, proof engi behind software engineering.
This thesis phDThesis ${ }_{\text {le }}^{\text {pi }}$
engineers typicauly use to interactivery guiae tor machine-checked proof. When a s proof about the system, traditional proof from scratch. Proof repair, tomation: it determines how the sy information to help fix the broken F
Proof repair in this thesis works by algorithms with program transforma ing and the transformations operate proofs called proof terms. Thanks to differencing and the transformatio results in dependent type theory. Fo ternalizes univalent transport from novel transformations over equalitic
This approach is realized inside Coq proof assistant. Case studies sł use that this proof repair tool suite on real proof developments.

Adapting Proof Automation to Adapt Proofs

$$
\begin{gathered}
\text { Talia Ringer } \\
\text { University of Washington, USA } \\
\text { John Leo } \\
\text { Halfaya Research, USA }
\end{gathered}
$$

Nathaniel Yazdani
Univesity of Washington, USA
Dan Grossman
ersity of Washington,

Abstract
We extend proof automation in an interactive theorem prover
to analyze changes in specifications and proofs. Our approach leverages the history of changes to specifications and proofs to search for a patch that can be applied to other specifica
tions and nronfs that need to chanoe in analloonis wave
$\underset{\substack{\text { Talia Ringer } \\ \text { University of Washington } \\ \text { USringer@cs.washington.edu }}}{\substack{\text {. } \\ \text { U }}}$

Proof Repair across Type Equivalences

$$
\begin{aligned}
& \text { RanDair Porter } \\
& \text { University of Washington } \\
& \text { USA } \\
& \text { randair@uwedu }
\end{aligned}
$$

We describe a new approach to automatically repairing broken proofs in the Coq proof assistant in response to changes
in types. Our approach combines a configurable proof term transformation with a decompiler from proof terms to suggested tactic scripts. The proof term transformation implements transport across equivalences in a way that removes eferences to the old version of the changed ty not rely on axioms beyond those Coq assumes.
We have implemented this approach in Pumprin Pi, an extension to the Pumprin Patch Coq plugin suite for proof repair. We demonstrate Pumprin Pi's flexibility on eight ase studies, including supporting a benchmark from a wer tudy, easing development with dep functions and proofs between unar and supporting an industrial proof er
between Coq and other verification and supporting an industrial proof er
between Coq and other verification t

Introduction

Program verification with interactive theorem provers has ome a long way since it inception, especially when it comes verified operating system kernel, for example, is the effort of a team of proof engineers spanning more than a million ines of proof, costing over 20 person-years. Given a famous 977 critique of verification [12] (emphasis ours):

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
sured that the software would remain stable.

Proof Repair

Traditional Automation (Part 2 of 5)

Proof Repair

You have changed a datatype, and now the standard library is broken!

Traditional Automation (Part 2 of 5)

Proof Repair

451 functions \& proofs, 25 seconds

You have changed a datatype, and now the standard library is broken!

Traditional Automation (Part 2 of 5)

Proof Repair

list <T> :=
| [] : list <T>
| cons : $\mathrm{T} \rightarrow$ list <T> \rightarrow list <T>
(* Repair all 451 functions \& proofs: *) Repair Module Old.list New.list in StdLib.

Traditional Automation (Part 2 of 5)

Proof Repair

list < T> :=
\mid cons : $T \rightarrow$ list <T> \rightarrow list <T>
| [] : list <T>
(* Repair all 451 functions \& proofs: *) Repair Module Old.list New.list in StdLib.

Traditional Automation (Part 2 of 5)

Proof Repair

list <T> :=
| cons : $T \rightarrow$ list <T> \rightarrow list <T>
| [] : list <T>
(* Repair all 451 functions \& proofs: *) Repair Module Old.list New.list in StdLib.

Traditional Automation (Part 2 of 5)

Traditional proof repair: + predictable + dependable

+ understandable
- limited in scope
- takes expertise to extend

Proof Repair - Predictable

PUMPKIN Pi supports any change described by a type equivalence.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair - Predictable

PUMPKIN Pi supports any change described by a type equivalence.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Equivalences

Traditional Automation (Part 2 of 5)

Equivalences

Traditional Automation (Part 2 of 5)

Equivalences

swap (swap_backI)
 Old.list T
 I : New.list T
 swap I

Traditional Automation (Part 2 of 5)

Equivalences

Traditional Automation (Part 2 of 5)

Equivalences

Q old type new type

Coq + PUMPKIN
new function Coq

Traditional Automation (Part 2 of 5)

Equivalences

$\xrightarrow{$| new function |
| :--- |
| or poof |
| |
| |
| |
| |$}$

Traditional Automation (Part 2 of 5)

Equivalences

new function Coq

Proof Repair - Dependable

PUMPKIN Pi is flexible \& useful for real scenarios.

Traditional Automation (Part 2 of 5)

Proof Repair - Dependable

Equivalences
 are even more expressive than they may sound.

Traditional Automation (Part 2 of 5)

Proof Repair - Dependable

Adding New Information

Traditional Automation (Part 2 of 5)

Traditional proof repair:

 + predictable * dependable + understandable- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Traditional proof repair: + predictable + dependable + understandable* (for type nerds)

- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Proof Repair - Understandable

Transport: Rewriting across Equivalences

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study.

Traditional Automation (Part 2 of 5)

Proof Repair - Understandable

Transport as a Proof Term Transformation

Traditional Automation (Part 2 of 5)

Proof Repair - Understandable

For type nerds: Deconstruct Equivalence (Lambek's Theorem)

Traditional Automation (Part 2 of 5)

Traditional proof repair: + predictable + dependable

+ understandable* (for type nerds)
- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Proof Repair - Limited Scope

Proof Repair across Quotient Type Equivalences

Internal and External Views
COSMO VIOLA, University of Illinois Urbana-Champaign, USA
MAX FAN, University of Illinois Urbana-Champaign, USA
TALIA RINGER, University of Illinois Urbana-Champaign, USA
Proofs in proof assistants like Coq can be brittle, breaking easily in response to changes in the terms and types those proofs depend on. To address this, recent work introduced an algorithm and tool in Coq to automatically repair broken proofs in response to changes that correspond to type equivalences. However, many changes remained out of the scope of this algorithm and tool-especially changes in underlying behavior. We extend this proof repair algorithm so that it can express certain changes in behavior that were previously out of scope. We focus in particular on equivalences between quotient types-types equipped with a relation that describes what it means for any two elements of that type to be equal. Quotient type equivalences can be used to express interesting changes in representations of mathematical structures, as well as changes in the underlying implementations of data structures-two use cases highlighted by our case studies.

We extend this algorithm to support quotient type equivalences in two different ways: (1) internally to cubical type theory (applied to Cubical Agda), and (2) externally to CIC_{ω} (applied to Coq). While our approach in Coq comes equipped with prototype automation, it suffers notably from Coq's lack of quotient types-something we circumvent using Coq's setoid machinery and an extension to the proof repair algorithm to support the corresponding new proof obligations. In contrast, while our approach in Cubical Agda is completely manual, it takes advantage of cubical type theory's internal quotient types, which makes the
 something not possible in gend Under Submission ween these two approaches, and demonstrate these tradeoffs on proor repair case studies tor previousiy unsupported changes.

Traditional Automation (Part 2 of 5)

Quotient Type Equivalences

one list queue two list queue

?

Traditional Automation (Part 2 of 5)

Traditional proof repair: + predictable + dependable

+ understandable* (for type nerds)
- limited in scope
- takes expertise to extend

Traditional Automation (Part 2 of 5)

Proof Repair - Hard to Extend

One PhD student, one undergraduate,
one advisor,
2.5 years.

Is this sustainable?

Traditional Automation (Part 2 of 5)

Proof Repair - Hard to Extend

One PhD student, one undergraduate,
one advisor,
2.5 years.

Is this sustainable?

Traditional Automation (Part 2 of 5)

1. Proof Assistants 2. Traditional Automation 3. LM-Based Automation 4. Best of Both Worlds 5. Opportunities

Language models:

- unpredictable
- not dependable
- not understandable
+ not very limited in scope
+ takes little expertise to extend

LM-Based Automation (Part 3 of 5)

Big Interest

PRoofster: Automated Formal Verification

First Project: Passport

PR̂oofster: Automated Formal Verification

Passport: Improving Automated Formal Verification Using

 IdentifiersALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST** University of Massachusetts Amherst, USA TMOTH ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA
TALIA RINGER, University of Illinois Urbana-Champaign, USA
$\underset{\beth}{ }$
Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proots, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
model used by proof-synthesis tools with three new encoding mechanisms for identifiers: category vocabulary

TOPLAS Vol. 45, Issue 2: No. 12, pp 1-30, 2023

ESEC/FSE 2023 Distinguished Paper

pervised Models:

Tom Reichel \boxtimes
paign, USA
R. Wesley Henderson \square

Andrew Touchet \boxtimes
Andrew Gardner*
Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer*
.

- Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The datasest is made up of Git commits from dozens of open-source projects with old and new versions of
definitions and proofs aligned acroos commits. Building this dataset was a significant undertaking highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenge ment across proof assistants

LM-Based Automation (Part 3 of 5)

First Project: Passport

Addition of real numbers is commutative

LM-Based Automation (Part 3 of 5)

First Project: Passport

LM-Based Automation (Part 3 of 5)

First Project: Passport

LM-Based Automation (Part 3 of 5)

First Project: Passport

Language models:

- unpredictable
- not dependable
- not understandable
+ not very limited in scope + takes little expertise to extend

First Project: Passport - Big Scope

- Yang and Deng 2019
- Mathematical formalizations, proven correct programs, and Coq automation libraries
- 123 open-source Coq projects
- Trained on 97 projects (57,719 theorems)
- Tested on 26 projects (10,782 theorems)

CoqGym

LM-Based Automation (Part 3 of 5)

First Project: Passport - Big Scope

We can prove $\mathbf{4 5 \%}$ more theorems than before!

LM-Based Automation (Part 3 of 5)

First Project: Passport - Big Scope

Diversity brings even higher returns! 64\% more theorems than the baseline!

(a) The impact of category vocabulary indexing on three identifier categories (without subwords or paths): local variables, type constructors, and global definitions.

(b) The impact of subword encoding on each of the categories of identifiers (with category vocabulary indexing but without paths).

(c) The impact of fully-qualified path encoding of type constructors and global definitions (with category vocabulary indexing but without subwords).

LM-Based Automation (Part 3 of 5)

First Project: Passport - Easy to Extend

- Some easy Python scripts on top of someone else's existing project
- Parallelized work for different extensions between me and five other authors
- Undergraduate implemented most challenging extension in an order of weeks
- Scripts were simple and fun enough that I got excited when writing one in between drafting thesis chapters, ran into a couch, and broke my big toe

LM-Based Automation (Part 3 of 5)

First Project: Passport

Language models:

- unpredictable
- not dependable
- not understandable
+ not very limited in scope + takes little expertise to extend

First Project: Passport - Confusion

- Somehow, the name of the user running the training script impacted the file order, which impacted the results of training a model on identical data in an identical way
- We found a nondeterminism bug in Pytorch
- Some combinations of extensions worked mysteriously poorly, even though all together they helped
- Apparently this is just life with even small LMs? Is this life now? Help?

LM-Based Automation (Part 3 of 5)

More in the Paper!

PR̂oofster: Automated Formal Verification

Passport: Improving Automated Formal Verification Using

 IdentifiersALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST** University of Massachusetts Amherst, USA IMOTH ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA
TALIA RINGER, University of Illinois Urbana-Champaign, USA
Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification, by learning from proof corpora to suggest proofs, have just begun to show their promise. These
tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than on how to make the most of the proof data.
In this paper, we develop Passport, a fully-automated proof-synthesis tool that systematically explores how to most effectively exploit one aspect of that proof data: identifiers. Passport enriches a predictive Coq
TOPLAS Vol. 45, Issue 2: No. 12, pp 1-30, 2023

ESEC/FSE 2023 Distinguished Paper

pervised Models:
the abovementioned search-based tools, all but one have neither $\mathbf{v a t}$
Tom Reichel \boxtimes
-
R. Wesley Henderson \square

Andrew Touchet \boxtimes
Andrew Gardner*
Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* \boxminus
any of Uinnois Urbana-Champaign, USA

- Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The dataset is made up of Git commits from dozens of open-source projects with old and new versions of
definitions and proofs aligned acroses commits. Building this dataset was a significant undertaking highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenge
 across proof assistants

LM-Based Automation (Part 3 of 5)

Since Then

Pर̌oofster: Automated Formal Verification

Passport: Improving Automated Formal Verific Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST*, University of Massachusetts Amherst, USA TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA TALIA RINGER, University of Illinois Urbana-Champaign, USA
Formally verifying system properties is one of the most effective ways of impre its high manual effort requirements often render it prohibitively expensive. To
verification, by learning from proof corpora to suggest proofs, have just begun to verification, by learning from proof corpora to suggest proofs, have just begun to 5 ,
tools are effective because of the richness of the data the proof corpora contain. the stylistic conventions followed by communities of proof developers, together thystems beneath proof assistants. However, this richness remains underexploited
sy focusing on architecture rather than on how to make the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool th how to most effectively exploit one aspect of that proof data: identifiers. Passpo

TOPLAS Vol. 45 , Issue 2: No. 12, pp 1-30,2023
the above-mentioned saarch-based tools, all but one have neither vat aset
Tom Reichel \square
Champaign, USA
R. Wesley Henderson \square

And
Andrew Touchet \boxtimes
Radre Iechnologies, Inc., Huntsville, AL, USA
Andrew Gardner*
Talia Ringer Ac, Huntswie, AL, USA

Talia Ringer* \square
ersy of

- Abstract

1. We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The is. dataset is made up of Git commits from dozens of open-source projects with old and new versions of
18 definitions and proofs aligned across commits. Builing this dataset was a a isgififcant undertakingg
17 highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges
ITP 2023 =
2012 ACM Subje

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

Passport: Improving Automated Formal Verifi Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST*, University of Massachusetts Amherst, USA TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA TALIA RINGER, University of Illinois Urbana-Champaign, USA
Formally verifying system properties is one of the most effective ways of imp its high manual effort requirements often render it prohibitively expensive. Tt
verification, by learning from proof corpora to suggest proofs, have just begun to verification, by learning from proof corpora to suggest proofs, have just begun to
tools are effective because of the richness of the data the proof corpora contain. the stylistic conventions followed by communities of proof developers, togethe systems benceath proof assistants. However, this richness remains underexploite focusing on architecture rather than on how to make the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool th how to most effectively exploit one aspect of that proof data: identifiers. Passpo

Pर̌oofster: Automated Formal Verification

Emily First
\qquad Amherst, MA, USA
efirs @cs umassedu

Timothy Zhou University of Illinois

Zhanna Kaufman University of Massachusett Amherst, MA, USA Ahanneazst, MA, USA. UA
\qquad University of Illinois Urbana-Champaign, IL, USA
reichel3@illinois.edu reichel3@illinois.ed
Talia Ringer
University of Illinois University of Illinois
Urbana-Champaign, IL, USA bana-Champailgn, IL, US
tringer@illinois.du

Yuriy Brun University of Massachusetts
Amherst, MA, USA brun@cs.umass.edu

Abstract-Formal verification is an effective but extremely Meanwhile, it took 11 person-years to write the proofs required
work-intensive method of improving software quality. Verifying
to verify the sel 4 micrkermel work intensive method of impoving software uquilty Verifing
the correctress of software systems often requires significantly
to verify the seL 4 microkernel $[17]$, which represents a tiny the correctress of software systems often requires signiifantiy
more effort than implemention of the functionality of a full kernel.

 $=$ ICSE Demo 2023

Baldur: Whole-Proof Generation and Repair with Large Language Models
abstract

\qquad

The man contributoons of our work are
We develop

ESEC/FSE 2023 Distinguished Paper

TOPLAS Vol. 45 , Issue 2: No. 12, pp 1-30,2023
he above-mentioned search-based tools, all but one have neither
Tom Reichel \triangle
Unversity of lilinois Urbana-Champaign, USA
R. Wesley Henderson \boxtimes

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet \square
Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* ${ }^{-}$
Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* ${ }^{-}$
University of Illinois Urbana-Champaign, USA

- Abstract

We introduce a new, large proofrepair dataset and benchmatker for
I5 dataset is made up of Git commits from dozens of open-soource projects with old and new versions of
10 definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
${ }^{2}$. highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges
10. and gaps, and we provide r .
${ }_{20}^{\text {10 }}$ Our hope is to make it eas froofs will move to tary
2012 ACM Subject Clasertar \rightarrow Machine learning; Software and

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

Pर̌oofster

Enter a Coq theorem to prove, or select an example from the drop-down menu
Enter your own theorem

Following the theorem statement, start the proof with "Proof." and "Admitted." Proofster will attempt to replace "Admitted." with a Coq proof.

LASER
University of Massachusetts Amherst
https://proofster.cs.umass.edu/

LM-Based Automation (Part 3 of 5)

Second Project: Proofster

```
Inductive ev: nat }->\mathrm{ Prop :=
    | ev_0 : ev 0
    | ev_SS (n: nat) (H: ev n) : ev (S (S n)).
Theorem ev_inversion: forall (n: nat)
    ev n }
    (n=0)}V\mathrm{ (exists }\mp@subsup{n}{}{\prime},n=S(S\mp@subsup{n}{}{\prime})\wedge\mathrm{ ev n').
Proof.
intros.=
n : nat H: ev n
n= 0 V (exists n' : nat, n=S (S n') ^ev n')
elim H.
left.
eauto. -
```

```
n : nat H: ev n
```

n : nat H: ev n
forall n : nat,
forall n : nat,
ev n }
ev n }
n= = V (exists n' : nat, n = S (S n') \ ev n') ->
n= = V (exists n' : nat, n = S (S n') \ ev n') ->
S (S n) = 0 V
S (S n) = 0 V
(exists n' : nat, S (S n) =S (S n') \ev n')

```
(exists n' : nat, S (S n) =S (S n') \ev n')
```

intros.
destruct H1. -

```
n : nat H: ev n n0 : nat H0 : ev n@ H1 : n@ = 0
S(S n8) = 0 V
(exists n' : nat, S (S n0) =S (S n') ^ ev n')
    S(S n0) = 0 V
    (exists n' : nat, S (S n0)=S(S n') ^ev n')
```

eauto.
eauto.
Qed.

Third Project: PRISM

Pर́oofster: Automated Formal Verification

Passport: Improving Automated Formal Verific Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST* University of Massachusetts Amherst, USA
TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA TALIA RINGER, University of Illinois Urbana-Champaign, USA
Formally verifying system properties is one of the most effective ways of impre its high manual effort requirements often render it prohibitively expensive. Tof
verification, by learning from proof corpora to suggest proofs, have just begun tos verincation, by learning from proof corpora to suggest proofs, have just begun to 5 ,
tools are effective because of the richness of the data the proof corpora contain. 7 the stylistic conventions followed by communities of proof developers, together systems beneath proof assistants. However, this richness remains underexploited. focusing on architecture rather than on how to make the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool tha

TOPLAS Vol. 45 , Issue 2: No. 12, pp 1-30,2023

Baldur: Whole-Proof Generation and Repair with Large Language Models

ESEC/FSE 2023 Distinguished Paper

Proof Repair Infrastructure for Supervised Models: Building a Large Proof Repair Dataset
Tom Reichel $■$
University of Illinois Urbana-Champaign, USA
R. Wesley Henderson \square

Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Touchet \square
Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner* ${ }^{\square}$
10 Radiance Technologies, Inc., Huntsville, AL, USA
Talia Ringer* $\quad \square$
University of Illinois Urbana-Champaign, USA
13 - Abstract
We introduce a pew, large proof-repair dataset and benchmark suite for the Co is dataset is made up of Git commits from dozens of onen-sosorce projects with old and new versions of 16. definitions and proofs aligned across commits. Building this dataset was a significant undertaking,
17
highlighting a number of challenges and gaps in existing infrastructure. We discuss these challenges
ame
\%anmind 2023
2003

LM-Based Automation (Part 3 of 5)

Third Project: PRISM

- Dataset for proof repair models for Coq
- Actual proof repairs by proof engineers
- Collaboration with Radiance
- Massive infrastructure undertaking
- Building many different projects
- ... with many different Coq versions
- ... for many different commits
- ... and aligning data across commit pairs
- WIP Training Repair Models

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

Pर́oofster: Automated Formal Verification

Passport: Improving Automated Formal Verific Identifiers

ALEX SANCHEZ-STERN*, University of Massachusetts Amherst, USA EMILY FIRST* , University of Massachusetts Amherst, USA
TIMOTHY ZHOU, University of Illinois Urbana-Champaign, USA ZHANNA KAUFMAN, University of Massachusetts Amherst, USA YURIY BRUN, University of Massachusetts Amherst, USA TALIA RINGER, University of Illinois Urbana-Champaign, USA
Formally verifying system properties is one of the most effective ways of impre its high manual effort requirements often render it prohibitively expensive. To
verification, by learning from proof corpora to sugest proofs, have just begun to verification, by learning from proof corpora to suggest proofs, have just begun to 5 .
tools are effective because of the richness of the data the proof corpora contain. 7 the stylistic conventions followed by communities of proof developers, together systems beneath proof assistants. However, this richness remains underexploited. focusing on architecture rather than on how to make the most of the proof data. In this paper, we develop Passport, a fully-automated proof-synthesis tool tha how to most effectively exploit one aspect of that proof data: identifiers. Passport
model used by proof-synthesis wouls with three new encoding mechanisms for identifiers: category yocabular
mole

TOPLAS Vol. 45 , Issue 2: No. 12, pp 1-30, 2023 .

Baldur: Whole-Proof Generation and Repair

ESEC/FSE 2023 Distinguished Paper

Proof Repair Infrastructure for Supervised Moaes: Building a Large Proof Repair Dataset Tom Reichel \square
. Weal
R. Wesley Henderson

Andrew Touchet \square
Radiance Technologies, Inc., Huntsville, AL, USA
Andrew Gardner*
Talia Ringer* \boxminus
University of Illinois Urbana-Champaign, USA

- Abstract

We introduce a new, large proof-repair dataset and benchmark suite for the Coq proof assistant. The dataset is made up of Git commits from dozens of open-source projects with old and new versions of
definitions and proofs aligned across commits. Building this dataset was a significant undertaking highlighting a number of challenges and gaps in existing infrastructure. We discouss these challenges

LM-Based Automation (Part 3 of 5)

Fourth Project: Baldur

- Using an LLM, one could, conceivably, synthesize entire proofs at once.
- Collaborating with Google, we fine-tuned the Minerva model to synthesize proofs in Isabelle/HOL
- Evaluated on PISA dataset (theorems in Isabelle/HOL)

Fourth Project: Baldur

Fourth Project: Baldur

- Baldur (without repair) can synthesize whole proofs for 47.9% of the theorems, whereas search-based approaches prove 39.0\%.
- Baldur can repair its own erroneous proof attempts using the error message from the proof assistant, proving another 1.5\%.
- Diversity continues to help. Together with Thor, a tool that combines a model, search, and a hammer, Baldur can prove $\mathbf{6 5 . 7 \%}$.

LM-Based Automation (Part 3 of 5)

More in the Papers

Pर̂oofster: Automated Formal Verification

abstract
 Zhanna Kaufman University of Massachusetts Amherst, MA, USA hannakuufme@cs.umass.ed Alex Sanchez-Stern University of Massachusetts Amherst, MA, USA sanchezstern@cs.umass.edu

Yuriy Brun

Emily First niversity of Massachusett Amherst, MA, USA

Timothy Zhou University of Illinois Urbana-Champaign, IL, US

> University of Massachusetts Amherst, MA, USA brun@cs.umas.edu
effective but extremely Meanwhile, it took 11 person-years to write the proofs required Ware quality. Verifing
n requires significanty
to verify the seL L microkernel [17], which represents a tiny
fraction of the functionality of a full kernel n requires signiticanty fraction of the functionality of a full kernel. Con, aiding the eprocess. Recent work has aimed to simplify the process of witing
the synthesis of formal

 oress via proof synthesis. of precomputed mathematical facts to attempt to "hammer"
fying a property of a
out a prof. Meanwhile, ASTactic
[30] Proverbot9001
[23] cally synthesize a formal out a proof. Meanwhile, ASTactic [30], Proverboty001 [23],
[" Whan it ic mnohlo to
TacTok
E Demo 2023
\qquad University of Illinois rbana-Champaign, IL, USA
reichel3 @illinoisedu reichel3 ©illinois.edu
Talia Ringer University of Illinois

Tom Reichel \square
paign, \quad SA
R. Wesley Henderson \boxtimes

Andrew Touchet \square
Radiance Technologies, Inc., Huntsville, AL, USA Andrew Gardner* ${ }^{\square}$
Radiance Technologies, Inc., Huntsville, AL, USA

Talia Ringer* $\quad \square$
University of Illinois Urbana-Champaign, USA

- Abstract

We introduce a new, large proofrenir
dataset is made up of Git commits from dozens of open-source projects with old and new versions of definitions and proofs aligned across commits. Building this dataset was a significant undertaking
highlighting a number of challenges and caps in existing infrastructure. We discuss these challenges
2023 =
2012 ACM Subject Class

LM-Based Automation (Part 3 of 5)

Language models:

- unpredictable
- not dependable
- not understandable
+ not very limited in scope
+ takes little expertise to extend

LM-Based Automation (Part 3 of 5)

Checking the Proof

Small Logical Kernel

Search Procedures

Domain-Specific Heuristics
Proof Transformations

Producing the Proof Lms

With de Bruijn, as long as you don't touch the kernel, your automation is safe.

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* But boy does this make the development process suck.

LM-Based Automation (Part 3 of 5)

Help at Every Stage

Spoiler!

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* (If your specification is OK, your kernel has no bugs, and you don't introduce axioms) LM-Based Automation (Part 3 of 5)

1. Proof Assistants 2. Traditional Automation 3. LM-Based Automation 4. Best of Both Worlds 5. Opportunities

Already Neurosymbolic

Checking the Proof

Small Logical Kernel

Search Procedures

Domain-Specific Heuristics
Proof Transformations
Producing the Proof LMs

But we want even more of the benefits of both kinds of automation.

Best of Both Worlds (Part 4 of 5)

Observation: We can do

 fairly well sometimes without search. Maybe we can use search at a higher level than before and get further returns?Best of Both Worlds (Part 4 of 5)

One idea: Move the search process up in abstraction.

One idea: Move the search process up in abstraction.

Proof Search

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Getting More out of Large Language Models for Proofs
Shizhuo Dylan Zhang ${ }^{1}$, Emily First ${ }^{2}$, and Talia Ringer ${ }^{1}$
${ }^{1}$ University of Illinois Urbana-Champaign, USA
${ }^{2}$ University of Massachusetts Amherst, USA

Abstract

Large language models have the potential to simplify formal theorem proving and make it more accessible. But how to get the most out of these models is still an open question. To answer this question, we take a step back and explore the failure cases of these models using common prompting-based terhnimues Our talk will discuss these failure cases and what they can teach us about hor A|TP $2023^{\text {ese models. }}$

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Best of Both Worlds (Part 4 of 5)

Conversational Action Search

Promising Results

Observation: Diversity in models helps, and diversity in techniques appears to help, too. Let's keep taking advantage of that.

Best of Both Worlds (Part 4 of 5)

Soon: Best of both worlds for proof repair, too.

1. Proof Assistants 2. Traditional Automation 3. LM-Based Automation 4. Best of Both Worlds 5. Opportunities

So far l've assumed the specification already exists.

What if LMs can help people specify software too? risky, but promising.

Opportunities (Part 5 of 5)

What if LMs can help people specify software too? This is risky, but promising.

Opportunities (Part 5 of 5)

Proof Engineer
 Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

Proof Engineer
Proof Assistant

Opportunities (Part 5 of 5)

Help at Every Stage

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* (If your specification is OK, your kernel has no bugs, and you don't introduce axioms) Opportunities (Part 5 of 5)

Help at Every Stage

With de Bruijn, as long as you don't touch the kernel, your automation is safe.* (If your specification is OK, your kernel has no bugs, and you don't introduce axioms) Opportunities (Part 5 of 5)

Key Challenge: There is no oracle for a specification!

Key Challenge:

What tools can best help users make sense of generated specifications? What information presented in what ways best helps users ensure that they match their intentions? Opportunities (Part 5 of 5)

More Trustworthy Software

Compilers

Machine Learning Systems

File Systems

Web Browsers

Operating Systems Quantum Optimizers

Key Challenge:

What tools can best help users make sense of generated specifications? What information presented in what ways best helps users ensure that they match their intentions?

