Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX

Muhammad Usama Sardar

TU Dresden

April 3, 2024

HotSoS'24

Agenda

Problem Statement

2 Approach

Attestation in Confidential Computing¹ (Simplified)

¹Sardar and Fetzer, "Confidential computing and related technologies: a critical review", 2023.

Attestation in Confidential Computing¹ (Simplified)

2/28

¹Sardar and Fetzer, "Confidential computing and related technologies: a critical review", 2023.

Attestation in Confidential Computing¹ (Simplified)

¹Sardar and Fetzer, "Confidential computing and related technologies: a critical review", 2023.

Problem: ad-hoc and unverified designs²

sgaxe.com

G < 🕁 🕈 🚾

Signing Your Own Quotes

We understand that remote attestion can be very tricky to pass. However, since we already done all the hard work of getting genuine attestation keys, we decided to help you out by developing a Twitter bot that passes SGX attestation for you. Our bot provides Attestation as a Service (AaaS), which allows you to get your own quotes signed with the keys we extracted using SGAxe. This way you can pass attestation without even owning an SGX machine. If you want to make use of our service, you can send a tweet to our bot 🖤 @SGAxe_AaaS. If you'll tweet it, we'll sign it

²www.sgaxe.com

Next-generation TDX³

BACKCHANNEL BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY

LILY HAY NEWMAN SECURITY APR 24, 2823 1:12 PM

Intel Let Google Cloud Hack Its New Secure Chips and Found 10 Bugs

To protect its Confidential Computing cloud infrastructure and gain critical insights, Google leans on its relationships with chipmakers.

³Wired, Intel Let Google Cloud Hack Its New Secure Chips and Found 10 Bugs, 2023.

• Intel SGX EPID⁴

 ⁴Sardar, Quoc, and Fetzer, "Towards Formalization of EPID-based Remote Attestation in Intel SGX", 2020.
⁵Sardar, Faqeh, and Fetzer, "Formal Foundations for Intel SGX Data Center Attestation Primitives", 2020.
⁶Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021.
⁷Antonino, Derek, and Woloszyn. *Flexible remote attestation of pre-SNP SEV VMs using SGX enclaves*, 2023.

- Intel SGX EPID⁴
- Intel SGX DCAP⁵ (Presented at HotSoS'21)

Muhammad Usama Sardar

⁴Sardar, Quoc, and Fetzer, "Towards Formalization of EPID-based Remote Attestation in Intel SGX", 2020.

⁵Sardar, Faqeh, and Fetzer, "Formal Foundations for Intel SGX Data Center Attestation Primitives", 2020.

⁶Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021.

⁷Antonino, Derek, and Woloszyn, Flexible remote attestation of pre-SNP SEV VMs using SGX enclaves, 2023.

- Intel SGX EPID⁴
- Intel SGX DCAP⁵ (Presented at HotSoS'21)
- Intel TDX⁶ (Presented at HotSoS'22)

 ⁴Sardar, Quoc, and Fetzer, "Towards Formalization of EPID-based Remote Attestation in Intel SGX", 2020.
⁵Sardar, Faqeh, and Fetzer, "Formal Foundations for Intel SGX Data Center Attestation Primitives", 2020.
⁶Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021.

⁷Antonino, Derek, and Woloszyn, Flexible remote attestation of pre-SNP SEV VMs using SGX enclaves, 2023.

- Intel SGX EPID⁴
- Intel SGX DCAP⁵ (Presented at HotSoS'21)
- Intel TDX⁶ (Presented at HotSoS'22)
- Intel SGX and AMD SEV⁷

⁴Sardar, Quoc, and Fetzer, "Towards Formalization of EPID-based Remote Attestation in Intel SGX", 2020.

⁵Sardar, Faqeh, and Fetzer, "Formal Foundations for Intel SGX Data Center Attestation Primitives", 2020.

⁶Sardar, Musaev, and Fetzer, "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification", 2021.

⁷Antonino, Derek, and Woloszyn, Flexible remote attestation of pre-SNP SEV VMs using SGX enclaves, 2023.

• Most detailed formal model of Intel TDX attestation

- Most detailed formal model of Intel TDX attestation
 - Success of FM is how close the model is to reality!

- Most detailed formal model of Intel TDX attestation
 - Success of FM is how close the model is to reality!
- Formal proof of insecurity of Intel's claimed TCB

- Most detailed formal model of Intel TDX attestation
 - Success of FM is how close the model is to reality!
- Formal proof of insecurity of Intel's claimed TCB
- First formal analysis of Arm CCA attestation

- Most detailed formal model of Intel TDX attestation
 - Success of FM is how close the model is to reality!
- Formal proof of insecurity of Intel's claimed TCB
- First formal analysis of Arm CCA attestation
 - Presented at HotSoS'23

Agenda

1 Problem Statement

Properties

3 Results

- 4 Overview of Follow-up Research
- 5 Summary

System |= *Property*

(1)

$$System \models Property \tag{1}$$

Protocol || Adversary |= Property

(2)

$$System \models Property \tag{1}$$

Protocol || *Adversary* |= *Property*

(2)

Protocol || *Adversary* ⊨ *Property*

(2)

Muhammad Usama Sardar

Challenge 1: Incomplete specs⁸

Wan_Intel 2 09-18-2023 • 07:57 PM • 656Aufrufe Moderator

Hello UsamaS,

I've checked with the relevant team.

The "internal specs" that we've mentioned in the thread above are part of an internal document used by our developers and it would not be relevant to customers. Sorry for the inconvenience and thank you for your support.

Regards,

Wan

⁸https://community.intel.com/t5/Intel-Software-Guard-Extensions/ Missing-specification-documents-for-TDX/m-p/1527218

Challenge 2: Vague and outdated specs⁹

Peh_Intel 3 09-14-2023 • 06:04 PM • 397Aufrufe Moderator

Hi UsamaS,

Thanks for your patience. I just received the updates as follow.

This index 1 SVN is the TDX Module major version. Originally, there was only 1 TDX 1.0 module, so the SVN had to match. Now that we have TDX 1.5 coming, it has a new major version, so the logic has to change, and those steps will also. The API doc will be updated soon to reflect this.

Regards,

Peh

⁹https://community.intel.com/t5/Intel-Software-Guard-Extensions/index-1-in-tdxtcbcomponents/m-p/1520194

TDX Model with Initialization Phase (PCE)

HotSoS'24

• Sanity checks

- Sanity checks
- Integrity of Evidence

- Sanity checks
- Integrity of Evidence
- Freshness of Evidence

- Sanity checks
- Integrity of Evidence
- Freshness of Evidence
- Confidentiality/Secrecy of attestation-related keys

- Sanity checks
- Integrity of Evidence
- Freshness of Evidence
- Confidentiality/Secrecy of attestation-related keys
- Attester Authentication

Agenda

1 Problem Statement

2 Approach

- Model
- Properties

3 Results

Overview of Follow-up Research

Summary

15 / 28

TCB Claimed by Intel¹⁰

¹⁰Intel, Intel R Trust Domain Extensions, 2021.

Verification Summary

	Integrity	Freshness	Confidentiality	Authentication				
Intel's claimed TCB	×	×	×	×				
Our proposed TCB	\checkmark	\checkmark	\checkmark	×				

Verification summary:

Query not event(AKverified(pubAK_1)) is false.

Query not event(CPUsentSMR(tcbiClaims_1,rdata_1)) is false.

Query not event(TDXMsentTDR(tdiClaims_1)) is false.

Query not event(QuoteVerified(tcbiClaims_1,tdiClaims_1,rdata_1)) is false.

Query not (event(TDidentity(pubTDK_1)) && event(VerIdentity(pubTDK_Ver_1))) is false.

Query event(AKverified(pubAK_1)) ==> event(AKsent(pubAK_1)) is true.

Query event(QuoteVerified(tcbiClaims_1,tdiClaims_1,rdata_1)) ==> event(CPUsentSMR(tcbiClaims_1,rdata_1)) is false.

Query event(QuoteVerified(tcbiClaims_1,tdiClaims_1,rdata_1)) ==> event(TDXMsentTDR(tdiClaims_1)) is false.

Query inj-event(QuoteVerified(tcbiClaims_1,tdiClaims_1,rdata_1)) ==> inj-event(CPUsentSMR(tcbiClaims_1,rdata_1)) is false.

Query inj-event(QuoteVerified(tcbiClaims_1,tdiClaims_1,rdata_1)) ==> inj-event(TDXMsentTDR(tdiClaims_1)) is false.

Query secret PCK_1,PCK is false.

Query secret PCAK is true.

Query secret AK_2,AK_1,AK is true.

Query secret MK_1,MK is true.

Query event(AKverified(pubAK_PCE_1)) && event(AKsent(pubAK_1)) ==> pubAK_PCE_1 = pubAK_1 is true.

Query event(VerIdentity(pubTDK_Ver_1)) && event(TDidentity(pubTDK_1)) ==> pubTDK_1 = pubTDK_Ver_1 is false.

.....

real 0m55,648s user 0m55,432s

Reported to Intel¹² and Fixed¹³

Figure 1 Trust Boundaries for TDX

Figure: Updated

¹¹Sardar, Full transparency of Intel TDX Specifications, 2023.

¹²Intel, Intel (R) Trust Domain Extensions, 2021.

¹³Intel, Intel R Trust Domain Extensions, 2023.

Reported to Intel¹² and Fixed¹³

 Warning: on same URL replacing the old white paper: Reported to Intel privately and publicly¹¹

¹¹Sardar, Full transparency of Intel TDX Specifications, 2023.

¹²Intel, Intel (R) Trust Domain Extensions, 2021.

¹³Intel, Intel R Trust Domain Extensions, 2023.

Calendar Collections Changes Summary Site Map URLs

Saved 6 times between January 15, 2023 and July 20, 2023.

JAN								FEB						MAR							APR							
1	2	3	4	5	6	7				1	2	3	4				1	2	3	4							1	
8	9	10	11	12	13	14	5	6	7	8	9	10	11	5	6	7	8	9	10	11	2	3	4	5	6	7	8	
15	16	17	18	19	20	21	12	13	14	15	16	17	18	12	13	14	15	16	17	18	9	10	11	12	13	14	15	
22	23	24	25	26	27	28	19	20	21	22	23	24	25	19	20	21	22	23	24	25	16	17	18	19	20	21	22	
29	30	31					26	27	28					26	27	28	29	30	31		23	24	25	26	27	28	29	
																					30							
MAY							JUN					JUL						AUG										
	1	2	3	4	5	6					1	2	3							1			1	2	3	4	5	
7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12	
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19	
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26	
28	20	20	21				25	26	27	28	29	30		22	24	26	26	27	20	20	27	20	20	20	21			

¹⁴https://web.archive.org/web/2023000000000*/https://cdrdv2.intel.com/v1/d1/getContent/690419

Agenda

1 Problem Statement

2 Approach

- Model
- Properties

B Results

Summary

Attested TLS

Attested TLS

• Incomplete and outdated specs for RA-TLS¹⁵

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts¹⁷

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts¹⁷
 - Fix: Designed an automated validation framework for key schedule

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts¹⁷
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts¹⁷
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

- Incomplete and outdated specs for RA-TLS¹⁵
 - Specs based on TLS 1.2 (TLS 1.3 is RFC since Aug 2018)
 - Fix: Used implementation and community input for formal model
- Very few comments in Inria's TLS formal model¹⁶
 - Literally no comments at all in main processes (such as Client12, Server12, Client13, Server13, appData, channelBindingQuery and secrecyQuery)!
- Incomplete validation of draft 20 artifacts¹⁷
 - Fix: Designed an automated validation framework for key schedule
- A simple extension made the artifacts running for 1 month on high-end server (icelake)
 - Submitted to ProVerif developers for analysis
 - Fix: Formal model from scratch

¹⁵Knauth et al., Integrating Remote Attestation with Transport Layer Security, 2018.

¹⁶https://github.com/Inria-Prosecco/reftls/tree/master/pv

¹⁷https://mailarchive.ietf.org/arch/msg/tls/-nFk9Eu7n-YFsFfGUe9X4JnrxX8/

Community input

- Paper authors¹⁸
 - Bruno Blanchet
 - Karthikeyan Bhargavan
 - Nadim Kobeissi
- LURK¹⁹ authors
- IETF TLS WG²⁰
- IRTF UFMRG chairs
- CCC attestation SIG²¹
- ..
- IETF 119 Hackathon²²
- IRTF Crypto Forum RG @ IETF 119²³

¹⁸Bhargavan, Blanchet, and Kobeissi, "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate", 2017.

¹⁹https://github.com/lurk-t/proverif

²⁰https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

 $^{21} \tt https://github.com/CCC-Attestation/meetings/blob/main/materials/MuhammadUsamaSardar_Formal_RA-TLS.pdf$

²²https://wiki.ietf.org/meeting/119/hackathon

²³https://datatracker.ietf.org/meeting/119/materials/slides-119-cfrg-formal-analysis-of-ra-tls-00

Outline

Problem Statement

2 Approach

- Model
- Properties

B Results

Overview of Follow-up Research

5 Summary

• Formal proof is as good as the formal model!

- Formal proof is as good as the formal model!
- Formal proof of insecurity of Intel's claimed TCB

- Formal proof is as good as the formal model!
- Formal proof of insecurity of Intel's claimed TCB
- Arch-def attestation does not provide strong authentication property (see paper)

- Formal proof is as good as the formal model!
- Formal proof of insecurity of Intel's claimed TCB
- Arch-def attestation does not provide strong authentication property (see paper)
- Validation of formal model is crucial!

- Formal proof is as good as the formal model!
- Formal proof of insecurity of Intel's claimed TCB
- Arch-def attestation does not provide strong authentication property (see paper)
- Validation of formal model is crucial!
- Open question: security of attested TLS

Key References I

Antonino, Pedro, Ante Derek, and Wojciech Aleksander Woloszyn. Flexible remote attestation of pre-SNP SEV VMs using SGX enclaves. 2023. URL: https://arxiv.org/pdf/2305.09351.pdf.

Intel. Intel (R) Trust Domain Extensions. Aug. 2021. URL: https://cdrdv2.intel.com/v1/dl/getContent/690419.

Intel R Trust Domain Extensions. Feb. 2023. URL: https://cdrdv2.intel.com/v1/dl/getContent/690419.

Knauth, T. et al. Integrating Remote Attestation with Transport Layer Security. Tech. rep. Intel Labs, 2018. URL: https://arxiv.org/abs/1801.05863.

Sardar, Muhammad Usama. Full transparency of Intel TDX Specifications. 2023. URL:

https://lists.confidentialcomputing.io/g/attestation/topic/full_transparency_of_intel/99387880 (visited on 06/18/2023).

Sardar, Muhammad Usama, Rasha Faqeh, and Christof Fetzer. "Formal Foundations for Intel SGX Data Center Attestation Primitives". In: *Formal Methods and Software Engineering*. Ed. by Shang-Wei Lin, Zhe Hou, and Brendan Mahoney. Cham: Springer International Publishing, 2020, pp. 268–283. ISBN: 978-3-030-63406-3. DOI: 10.1007/978-3-030-63406-3_16.

Sardar, Muhammad Usama and Christof Fetzer. "Confidential computing and related technologies: a critical review". In: *Cybersecurity* 6.1 (May 2023), p. 10. ISSN: 2523-3246. DOI: 10.1186/s42400-023-00144-1. URL: https://cybersecurity.springeropen.com/articles/10.1186/s42400-023-00144-1.

Key References II

Sardar, Muhammad Usama, Thomas Fossati, et al. Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX. Nov. 2023. URL: https: //www.researchgate.net/publication/375592777_Formal_Specification_and_Verification_of_Architecturallydefined_Attestation_Mechanisms_in_Arm_CCA_and_Intel_TDX.

Sardar, Muhammad Usama, Saidgani Musaev, and Christof Fetzer. "Demystifying Attestation in Intel Trust Domain Extensions via Formal Verification". In: *IEEE Access* (2021). URL: https://www.researchgate.net/publication/ 351699567_Demystifying_Attestation_in_Intel_Trust_Domain_Extensions_via_Formal_Verification.

Sardar, Muhammad Usama, Do Le Quoc, and Christof Fetzer. "Towards Formalization of EPID-based Remote Attestation in Intel SGX". In: *Euromicro Conference on Digital System Design*. 2020, pp. 604–607. DOI: 10.1109/DSD51259.2020.00099.

Wired. Intel Let Google Cloud Hack Its New Secure Chips and Found 10 Bugs. 2023. URL: https://www.wired.com/story/intel-google-cloud-chip-security/ (visited on 04/25/2023).

Call to Action

- Bring your expertise: https://github.com/CCC-Attestation/formal-spec-TEE
- Additional information: link here²⁴

²⁴Sardar, Fossati, et al., Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX, 2023.