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◮ There is an asymmetry between reactive cyber defenses
and cyber attacks

◮ The effect of attacks is amplified by a function of λ1 (i.e.,
network effect), while the effect of defense is not.

◮ λ1 is the spectral radius of the attack-defense interaction
structure (“overlay” networks in most cases)

◮ How to eliminate the asymmetry that is to the advantage of
the attacker?

◮ Active Cyber Defense (ACD) is one approach [Internet Math-
ematics 2015]
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Active Cyber Defense (ACD)

◮ Idea: Defender uses defenseware (e.g., “white worms”) to
cure infected computers (under its jurisdiction)

◮ Disclaimer: ACD 6= Fight Back (Retaliation)

◮ The idea of ACD is not new, but the rigorous characteriza-
tion of its power is.

◮ Our goal: Understanding ACD’s power and limitation

◮ When is ACD effective? [Internet Mathematics 2015]

◮ How to use ACD optimally? [GameSec’13]

◮ This paper: Rich phenomena that can be exhibited by ACD
and their implications



Model

◮ Vertex set V = {1, 2, · · · , n} representing computers (or
components)

◮ Attack-victim relation formulates an attack structure GR =

(V ,ER), represented by adjacency matrix AR = [aR
vu]n×n

◮ ACD formulates a defense structure GB = (V ,EB), repre-
sented by adjacency matrix AB = [aB

vu]n×n

◮ Each node v ∈ V has two possible states: secure or Blue;
compromised or Red

◮ Bv (t): the probability node v ∈ V is in state Blue at time t

◮ Rv (t): the probability node v ∈ V is in state Red at time t
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θv ,BR(t): probability v changes state from Blue to Red at time t ,
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Model

The state transition diagram for each node v ∈ V

θv ,BR(t): probability v changes state from Blue to Red at time t ,
θv ,RB(t): probability v changes state from Red to Blue at time t

This leads to the master equation for each v ∈ V :















dBv (t)
dt

= θv ,RB(t) · Rv (t)− θv ,BR(t) · Bv (t)

dRv (t)
dt

= θv ,BR(t) · Bv (t)− θv ,RB(t) · Rv (t)
, (1)



How to specify θv ,BR(t) and θv ,RB(t)?

θv ,BR(t) depends on defense-power function f : [0, 1] → {0} ∪

R
+, which abstracts the power of the defenseware in detecting

and cleaning up compromised (Red) nodes:

θv ,RB(t) = f
(

1
deg(v ,GB)

∑

u∈Nv,GB
Bu(t)

)

,

Nv ,GB
is v ’s neighbors and deg(v ,GB) is its (in)-degree in GB.



How to specify θv ,BR(t) and θv ,RB(t)?

θv ,BR(t) depends on defense-power function f : [0, 1] → {0} ∪

R
+, which abstracts the power of the defenseware in detecting

and cleaning up compromised (Red) nodes:

θv ,RB(t) = f
(

1
deg(v ,GB)

∑

u∈Nv,GB
Bu(t)

)

,

Nv ,GB
is v ’s neighbors and deg(v ,GB) is its (in)-degree in GB.

Similarly, θv ,RB(t) depends on attack-power function g : [0, 1] →
{0}∪R+, which abstracts the power of the attack (e.g., malware)
in compromising secure (Blue) nodes:

θv ,BR(t) = g
(

1
deg(v ,GR)

∑

u∈Nv,GR
Bu(t)

)

,



Properties of defense- and attack-power functions

◮ Defense-power function f (·) ≥ 0

◮ f (0) = 0: ACD must be launched from some Blue node

◮ Attack-power function g(·) ≥ 0

◮ g(1) = 0: attack must be launched from some Red node

◮ The two functions, f (·) and g(·) do not have to have any
specific relation, except that they are differentiable (for an-
alytical treatment).



Main research task

For all t ≥ 0 and all v ∈ V

◮
dBv (t)

dt + dRv (t)
dt = 0

◮ Bv (t) + Rv (t) = 1

Therefore, we only need to consider:

dBv (t)
dt

= f
(

1
deg(v ,GB)

∑

u∈Nv,GB
Bu(t)

) [

1 − Bv (t)
]

−g
(

1
deg(v ,GR)

∑

u∈Nv,GR
Bu(t)

)

Bv (t) (2)

Main research task is to analyze system (2) for all v ∈ V



Equilibrium is a useful concept for cyber security

◮ Despite that cyber security is rarely be in equilibrium

◮ We can quantify the effectiveness of ACD via the notion of
σ-effectiveness: the dynamics converges to σ

◮ We consider homogeneous equilibria [B∗

1 , · · · ,B
∗

n ] with B∗

1 =
· · · = B∗

n = σ ∈ [0, 1]

◮ All-Blue equilibrium B∗ = 1: ACD is 1-effective

◮ All-Red equilibrium B∗ = 0: ACD is 0-effective

◮ σ-equilibrium B∗ = σ: ACD is σ-effective

◮ Stability captures a certain kind of resilience



A tool: Jacobian matrix

The Jacobian matrix of Eq. (2) near equilibrium σ is:

M =
[

(1 − σ)f ′(σ)D−1
AB

AB − σg′(σ)D−1
AR

AR

]

−
[

f (σ) + g(σ)
]

In.
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A tool: Jacobian matrix

The Jacobian matrix of Eq. (2) near equilibrium σ is:

M =
[

(1 − σ)f ′(σ)D−1
AB

AB − σg′(σ)D−1
AR

AR

]

−
[

f (σ) + g(σ)
]

In.

Let λ(M) be the set of eigenvalues of matrix M

Hypothesis H0: existence of homogeneous equilibrium
in Eq. (2)

There exists σ ∈ [0, 1] such that (1 − σ) f (σ) = σ g(σ).

This hypothesis will be replaced by actual conditions in the full
version of the paper.



Existence and stability of equilibria

Proposition 1

Under hypothesis H0, equilibrium B∗ = σ ∈ [0, 1] of Eq. (2) is
stable if the real part ℜ(µ) < 0 for all µ ∈ λ(M), and unstable
if ℜ(µ) > 0 for some µ ∈ λ(M).

Corollary 1

If f (0) = 0, then equilibrium B∗ = 0 is locally stable when
f ′(0) < g(0) and locally unstable when f ′(0) > g(0).

If g(1) = 0, then equilibrium B∗ = 1 is locally stable when
−g′(1) < f (1) and locally unstable when −g′(1) > f (1).



Existence and stability of equilibria (cont.)

Corollary 2

Suppose GB = GR = G (i.e., AB = AR = A). Let µ1 be
the eigenvalue of D−1

A A that has the smallest real part. If the
attack-power and defense-power satisfy one of the following:

◮ (1 − σ)f ′(σ)− σg′(σ) > 0 and
f (σ) + g(σ)

(1 − σ)f ′(σ)− σg′(σ)
> 1

◮ (1−σ)f ′(σ)−σg′(σ) < 0 and
f (σ) + g(σ)

(1 − σ)f ′(σ)− σg′(σ)
< ℜ(µ1),

then B∗ = σ ∈ [0, 1] is locally stable. If the attack-power and
defense-power satisfy one of the following:

◮ (1 − σ)f ′(σ)− σg′(σ) > 0 and
f (σ) + g(σ)

(1 − σ)f ′(σ)− σg′(σ)
< 1

◮ (1−σ)f ′(σ)−σg′(σ) < 0 and
f (σ) + g(σ)

(1 − σ)f ′(σ)− σg′(σ)
> ℜ(µ1),

then B∗ = σ ∈ [0, 1] is locally unstable.



Example: stability effect

Suppose GB = GR is an Erdös-Rényi (ER) random graph in-
stance G = (V ,E) with |V | = 2, 000 and edge probability p =

0.005. Consider attack-power function g(x) = 1− x against the
following defense-power function f (x):

Scenario 1: f (x) = x2
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Example: stability effect

Suppose GB = GR is an Erdös-Rényi (ER) random graph in-
stance G = (V ,E) with |V | = 2, 000 and edge probability p =

0.005. Consider attack-power function g(x) = 1− x against the
following defense-power function f (x):

Scenario 1: f (x) = x2 ⇒ B∗ = 0 is stable, B∗ = 1 is unstable.

Scenario 2: f (x) = x2 + x ⇒ B∗ = 0 is unstable, B∗ = 1 is
stable.

Scenario 3: f (x) = x2 + 1
2x ⇒ B∗ = 0 and B∗ = 1 are stable,

B∗ = 0.5 is unstable.

Scenario 4: f (x) = −2x2 +2x ⇒ B∗ = 0 and B∗ = 1 are unsta-
ble, B∗ = 0.5 is stable.



Example: stability effect

Metric: 〈Bv (t)〉 = 1
|V |

∑

v∈V Bv (t), portion of secure nodes.
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(a) Scenario I: f (x) = x2
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(b) Scenario II: f (x) = x2 + x
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(c) Scenario III: f (x) = x2 + 1
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(d) Scenario IV: f (x) = −2x2 + 2x



Why the concept of equilibrium is still useful even
though cyber security may rarely be in equilibrium?

(e) Dynamic defense power f (x)
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(f) This is why!!

Figure: Effects of perturbations at t = 150,300,400

Insight

ACD dynamics may not enter into “equilibrium” because of
perturbations to security state (e.g., cleaning/removing some
compromised computers), and/or perturbations to attack/de-
fense power (e.g., introduction of new attack/defense).



Warm up: parameterized defense-power

Suppose GB = GR is ER graph instance G = (V ,E) with |V | =

2, 000 and p = 0.5. Consider parameterized defense-power
f (x , ν) with parameter ν ∈ (0,+∞) and attack-power g(x):

f (x , ν) = νx − 2x2, g(x) = (1 − 2x)2
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(b) ν = 0.8
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(c) ν = 0.85
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(d) ν = 1
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(f) ν = 2



Phenomenon: Transition between multiple attractors

Under condition f (0) = g(1) = 0, system (2) has two locally
stable equilibria B∗ = 1 and B∗ = 0.
Given thresholds τ∗1 , τ

∗
2 ∈ (0, 1). Define Blue and Red threshold

sets as:

ΞGB ,τ
∗

1
=







B ∈ [0, 1]n
∣

∣

∣

∣

∣

1
deg(v ,GB)

∑

u∈Nv,GB

Bu ≥ τ∗1 , ∀v ∈ V







.

ΞGR ,τ
∗

2
=







R ∈ [0, 1]n
∣

∣

∣

∣

∣

1
deg(v ,GR)

∑

u∈Nv,GR

Ru ≥ τ∗2 , ∀v ∈ V







.

Manipulating the initial state B(0) can cause transition of the
dynamics between the two equilibria!



Phenomenon: Transition between multiple attractors

Theorem 1

Let GB = (V ,EB) and GR = (V ,ER) be two arbitrary graphs.
Suppose f (·) and g(·) are continuous with f (0) = g(1) = 0.
Case 1: Suppose attack-power and defense-power satisfy:
for any z ∈ [τ∗1 , 1), B ∈ ΞGB ,τ

∗

1
and some α > 0 we have

f (z) > α · z and

f

(

1
deg(v ,GB)

∑

u∈Nv,GB

Bu

)

+ g

(

1
deg(v ,GR)

∑

u∈Nv,GR

Bu

)

≤ α.

If initial value B(0) ∈ ΞGB ,τ
∗

1
, lim

t→∞
Bv (t) = 1 for v ∈ V .

Case 2: Suppose for any z ∈ [τ∗2 , 1), R ∈ ΞGR ,τ
∗

2
and some

β > 0 we have g (1 − z) > β · z and

f

(

1 −
1

deg(v ,GB)

∑

u∈Nv,GB

Ru

)

+ g

(

1 −
1

deg(v ,GR)

∑

u∈Nv,GR

Ru

)

≤ β

If initial value R(0) ∈ ΞGR ,τ
∗

2
, lim

t→∞
Rv (t) = 1 for v ∈ V .



Transition between multiple attractors

Cyber security meaning of the Theorem

Under a certain condition (case 1 ), the defender needs to
manipulate the initial security state B(0) to belong to ΞGB ,τ

∗

1

to make active defense 1-effective; this says what the de-
fender should strive to do.



Transition between multiple attractors

Cyber security meaning of the Theorem

Under a certain condition (case 1 ), the defender needs to
manipulate the initial security state B(0) to belong to ΞGB ,τ

∗

1

to make active defense 1-effective; this says what the de-
fender should strive to do.

Under certain other circumstances (case 2 ), the defender
should make sure that the initial security state B(0) does not
cause R(0) = 1 − B(0) ∈ ΞGR ,τ

∗

2
, because in this regime ac-

tive defense is 0-effective; this says what the defender should
strive to avoid.
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Example: Transition between B∗ = 0 and B∗ = 1

Consider defense-power f (x) =
1

e−10x+5 + 1
and attack-power

g(x) = 2(1 − x)2. GB and GR are two different ER graph in-
stances with |V | = 2, 000 and p = 0.5. By manipulating the
initial value 〈Bv (0)〉 to 〈Bv (0)〉 > 0.5, the system converges to
B∗ = 1; By manipulating the initial value 〈Bv (0)〉 to 〈Bv (0)〉 <

0.5, the system converges to B∗ = 0.
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(j) Transition induced by varying initial value 〈B (0)〉



Insight

A small change in the initial global security state, in the model
parameters, in the attack network structure, or in the defense
network structure can lead to substantial change in ACD dy-
namics.



Insight

A small change in the initial global security state, in the model
parameters, in the attack network structure, or in the defense
network structure can lead to substantial change in ACD dy-
namics. A rigorous characterization, such as the theorem
mentioned above, can offer precise guidance on “what the
defender should strive to do” and “what the defender should
strive to avoid.”



Phenomenon: Hopf Bifurcation

Consider a system of equations with differentiable F

dx
dt

= F (x , ν), x ∈ R
n.

Basic idea: a critical value ν∗ at which rich phenomenon emerges

Technical issue: How to identify the critical value ν∗?



Example: Hopf bifurcation by perturbation to para.

Technical issue: How to identify the critical value ν∗?

Consider ER graph instance GB = GR = G = (V ,E) with
|V | = 2, 000 and edge probability p = 0.005. Defense-power
and attack-power functions are:

f (x) = −4x2 + 4x , g(x , ν) =
(

νx −
ν

2

)2
.

The real part of the eigenvalue of D−1
A A with the smallest real

part is ℜ(µ1) = −0.3448.

◮ When ν = 3, we have ℜ(µ1) > −0.4.

◮ When ν = 4, we have ℜ(µ1) < −0.333.

◮ When ν = 3.8, we have ℜ(µ1) ≈ −0.3448.



Example: Hopf bifurcation by perturbation to para.
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  Hopf bifurcation Diagram

(k) Bifurcation diagram: ν ∈ (3, 6)
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(l) Zoon into: ν ∈ (4.75, 5.5)
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  Limit cycle

(m) Periodic trajectory: ν = 4
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(n) Periodic trajectory: ν = 5.05

Figure: Hopf bifurcation diagram: 〈Bv 〉 are the extremum points of 〈Bv (t)〉 in time

period t ∈ (1000, 2000).



Example: Hopf bifurcation by perturbation to GR

Consider ER graph instances GB = (V ,EB) and GR = (V ,ER),
both with |V | = 2, 000 and p = 0.005. Consider defense-power
and attack-power functions:

f (x) = −4x2 + 4x , g(x , ν) =
(

νx −
ν

2

)2
with ν = 6

We make 100 iterations of perturbations to GR as follows:

◮ During each of the first 50 iterations, we delete 226 edges
(or 1% of the edges in the original ER) chosen indepen-
dently and uniformly at random

◮ During each of the next 50 iterations, we add 226 edges
chosen independently and uniformly random among all the
unconnected edges.



Example: Hopf bifurcation by perturbation to GR

The period-doubling cascade phenomenon appears and finally
leads to chaos after deleting > 36% edges and before adding
14% edges. (Not symmetric because of randomness.)
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Insight

ACD dynamics can exhibit Hopf bifurcation. These situations
are “unmanageable:” infeasible/impossible to estimate the
global security state in real-time, so we should avoid.



Phenomenon: Chaos

Let

F
(

Bv (t), t
)

= f
(

1
deg(v ,GB)

∑

u∈Nv,GB
Bu(t)

) [

1 − Bv (t)
]

−

g
(

1
deg(v ,GR)

∑

u∈Nv,GR
Bu(t)

)

Bv (t)

For a small perturbation to initial value Bv (0), we have

εv (t) = DxF (x , t)
∣

∣

∣

x=Bv (0)
· εv (0)

where εv (t) is a n × 1 vector and DxF (x , t)
∣

∣

x=Bv (0)
is the Jaco-

bian matrix of map F start at time t .

By the QR decomposition of matrix ε(t) = [ε1(t), · · · , εn(t)], we
obtain ε(t) = q(t) · r(t), where q(t) is an orthogonal matrix and
r(t) is an upper triangular matrix.



Phenomenon: Chaos

To measure the average rate of convergence between two tra-
jectories F

(

Bv (0), t
)

and F
(

Bv (0) + εv (0), t
)

, we define:

Definition (Lyapunov characteristic exponents; LEs)
For a n-dimensional map, define Lyapunov characteristic
exponents as

Li = lim
t→∞

1
t

ln
∣

∣λii(t)
∣

∣ (i = 1, · · · , n),

λii(t) is the diagonal elements of upper triangular matrix r(t).

Under some mild contions, the limit exists for almost all initial
values B(0) = [B1(0), · · · ,Bn(0)] and almost all matrix ε(0).

The Maximal LE MLE = max1≤i≤n Li indicates whether the dy-
namical system is chaotic (when MLE > 0) or not.



Example: Chaos

Consider an ER graph instance GB = GR with |V | = 2, 000 and
p = 0.005, and defense-power and attack-power functions:

f (x) = −4x2 + 4x and gν(x) =
(

νx −
ν

2

)2
.
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(a) MLE > 0 indicates chaos
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(b) 〈Bv (t)〉 for ν = 8 exhibits chaos

Insight

ACD dynamics can be chaotic (infeasible/impossible to pre-
dict). Defender must manipulate the dynamics to avoid such
“unmanageable” situations (e.g., by making ν ≤ 5 here).



Related work

◮ ACD is an integral component in the Cybersecurity Dynam-
ics framework for modeling and quantifying cyber security
from a holistic perspective

◮ See [HotSoS’14] for history and numerous related works

◮ ACD is first rigorously modeled and studied by us in [Inter-
net Mathematics’2015, GameSec’13]

◮ This paper: Understanding/characterizing ACD dynamics
◮ Separate attack structure GA from defense structure GB

◮ Consider attack-power and defense-power functions that cause
ACD dynamics to exhibit rich phenomena

◮ Ongoing work: Earlywarning of such “critical transition” (with-
out knowing the parameters)



Take-away message

◮ Birfucation and chaos are relevent to cyber security!

◮ Cyber security implications:

◮ Infeasible/impossible to accurately measure/predict cyber
security under certain circumstances

◮ Defender must manipulate the dynamics to avoid such “un-
manageable situations”

◮ This is an exciting field with many open problems!!
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