

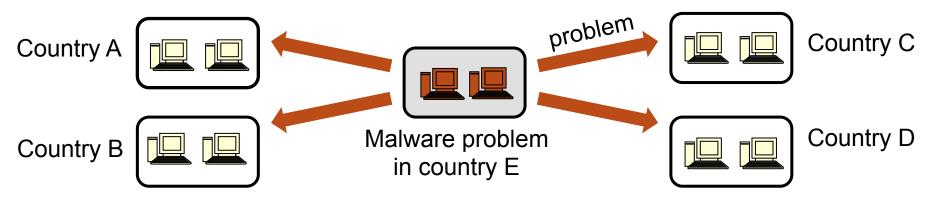
An Empirical Study of Global Malware Encounters

Ghita Mezzour mezzour@cmu.edu Kathleen Carley

kathleen.carley@cs.cmu.edu

L. Richard Carley

carley@ece.cmu.edu



Center for Computational Analysis of Social and Organizational Systems http://www.casos.cs.cmu.edu/

23 April 2015

A Global Problem Requires a Global Perspective

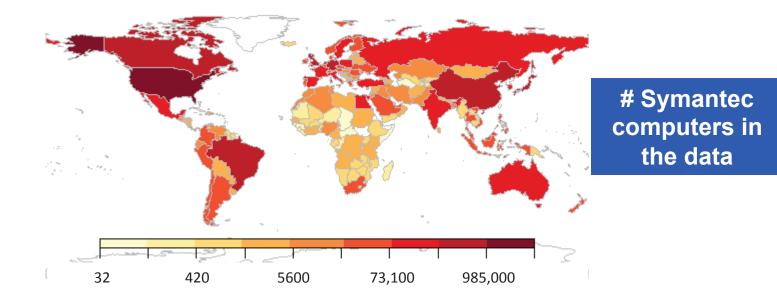
• Malware is a global problem

- Identifying factors that cause countries to have serious malware problems
 - Opportunity to alter these factors
 - And Reduce global malware encounters

Prior Work Has Different Focus

- Attack infrastructure characterization [Provos et al. '08, Caballero et al. '11]
 - Example: find choke points
- User level [Levesque et al '13, Canali et al `14]
 - Relationship between users' demographics and malware exposure
- Plausible explanations for international differences
 - No empirical testing of explanations' accuracy

Overview


- Malware problem studied: malware exposure
 - Malware contagion
 - Compromised computers as bots
- Research question
 - What factors cause computers in some countries to be highly exposed to malware?
- Data
 - Symantec Anti-Virus (AV) telemetry data
 - Country-level technical & social factors
- Approach

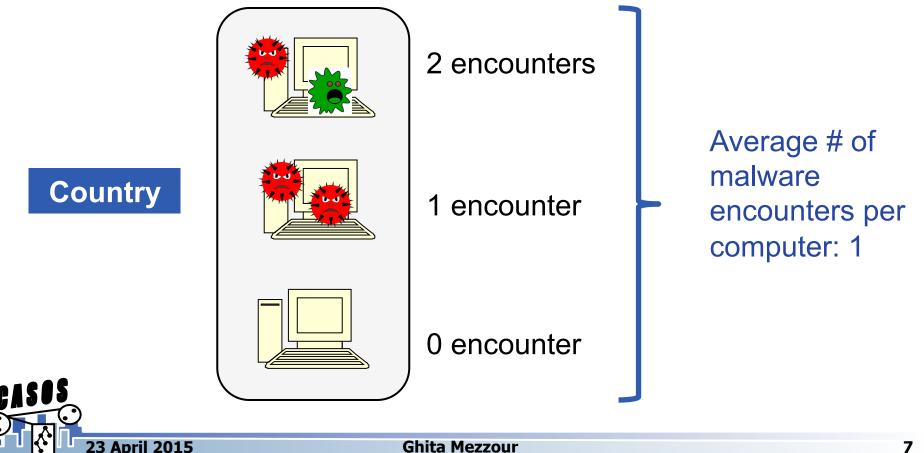
23 April 2015

Statistical hypothesis testing

Symantec Anti-Virus Telemetry Data

Data from 10 million+ customers worldwide

• Time coverage: 2009-2011


Symantec Anti-Virus Telemetry Data

• Threat report generation

	Threat report				
symantec.	Malware name	W32.Aimdes.A@mm			
	IP address	128.2.184.224	Teleme	etrv	
Victim	Country	United States	data	<i>.</i>	
	Machine ID	104951814			
 Threat catalog [Mezzour et al. '14]: online descriptions Threat catalog entry 					
		W32.Aimdes.A@mm			
	Malware family	Aimdes			
easos	Malware type	worm			
3 1 1 1 23 April 2015		Ghita Mezzour		6	

Counting Malware Encounters

- Malware encounter instance:
 - (Victim machine, malware family)

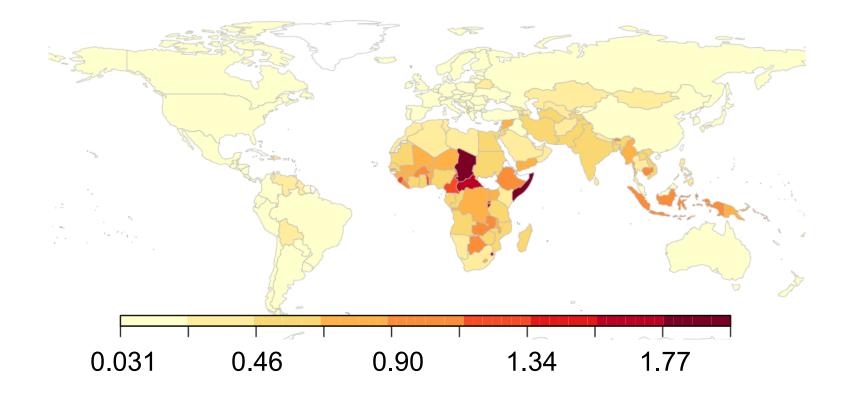
1505

23 April 2015

Hypotheses about Factors Affecting Malware Exposure

Factor	Expected effect
Resources [Caballero et al. 11]	+++
Web visits [Canali et al. 14]	+++
Security expertise [Onarlioglu et al. 12]	· · · · ·
Software piracy [Kammerstetter et al. 12]	++++
International hostilities [NY times 12]	+++
International alliances [Madnick et al. 09]	· · · · ·
International extraditions [Madnick et al. 09]	· · · · ·

Data about Factors Affecting Malware Exposure


Factor	Data	
Resources	GDP per capita [World bank] Bandwidth [ITU]	
Web visits	# web pages [Canali et al. 14] # top level domains [Canali et al. 14]	
Security expertise	<pre># research papers [SCOPUS] CERT [Lewis 11, CERT]</pre>	
Software piracy	Piracy index [Business software alliance]	
International hostilities	Hostility betweenness [International Crisis behavior]	
International alliances	Alliance betweenness [Correlates of War]	
International extraditions	Extradition betweenness [UN]	

23 April 2015

Sub-Saharan Africa most Exposed to Malware

• Avg # of malware encounters per computer

Avg # viruses encountered per computer

Piracy behind High Malware Exposure in Africa

	Viruses		
Bandwidth	0.013		
GDP PC (log)	0.302		
# web visits	0.021		
#top level domains visits	0.024		
Piracy	0.81***		
Piracy x GDP per capita (log)	-0.68***		
Cyber security research	-0.085		
Cyber security institutions	0.056		
Military alliances	0.009		
Military hostilities	0.054		
Extradition treaties	0.015		
R square	0.64		
* p < 0.05, ** p < 0.01, *** p < 0.001			

Regression analysis. Regression coefficients are standarized

23 April 2015

Ghita Mezzour

Computer Piracy in Africa

- Pirated software available from street merchants
- Merchants download pirated software from P2P networks and dubious sites
- Pirated software uploaded by hackers interested in distributing malware

How to Fight Software Piracy in Sub-Saharan Africa?

- Economic factors are driving piracy
 - Poor people can't afford legitimate software
 - GDP per capita in Central African Republic: 700 USD
 - Microsoft windows: 119 USD (119/700 = 0.17)
- Governments reluctant to fighting piracy
 - No desire to cut populations from the Internet
- Software industry has incentive to act
 - Money losses
 - Price adjustment to income: win-win solution

Limitations

- Symantec data
 - Single vendor perspective
 - Highly sophisticated attacks non-covered
 - 5 years old
- First-pass analysis

Future Work

- Data from other vendors
- Other analyses
 - Longitudinal analysis
 - Ratio of computers that encounter any number of malware out of total number of computers
 - Use Bayesian Information Criteria (BIC) technique to find "best" fitting regression
- Higher granularity analysis
 - ISP level
- Field studies in Africa

Conclusion

- Malware is global: needs global perspective
- Empirically identify factors behind international variation in malware encounters
 - Symantec anti-virus telemetry data
 - Country-level social & technical measures
- Sub-Saharan Africa most exposed to malware because of wide-spread software piracy
- Policy suggestion
 - Software price adjustment

