

Challenges with Applying Vulnerability Prediction Models

 Patrick Morrison¹, Kim Herzig², Brendan Murphy², Laurie Williams¹
 ¹Department of Computer Science, North Carolina State University
 ²Microsoft Research, Cambridge, UK
 pjmorris@ncsu.edu kimh@microsoft.com bmurphy@microsoft.com lawilli3@ncsu.edu

Problem Scale

- Windows 7-8
 - Over 70 million lines of code, ~ US Eastern
 Seaboard population
- Granularity
 - Binaries ~ cities
 - Files ~ neighborhoods
- Objects of interest
 - Defects ~ Doctors
 - Vulnerabilities ~ Vascular surgeons

Problem

In the absence of exhaustive software testing, software development teams have to choose what, and how much, to test.

Solution Idea

If there are machine-measurable differences between defect-prone code and more benign code, those differences can be used to automate identification of problematic code and focus verification efforts.

Software Metrics

 Measures of code size, complexity, change, dependency, and other characteristics of source code.

Defect Prediction Models

 Researchers and practitioners have applied statistical prediction modeling techniques to various software metrics to predict defectprone sections of code.

Windows DPMs

Independent Variables	Precision	Recall
Organizational structure [17]	0.79	0.80
Code churn [5]	0.79	0.66
Code dependencies [9]	0.75	0.69
Pre-release defects [6]	0.74	0.63

Used within Windows
 Development Teams for
 risk analysis, planning,
 resource allocation,
 dashboards

Windows DPMs

Independent Variables	Precision	Recall
Organizational structure [17]	0.79	0.80
Code churn [5]	0.79	0.66
Code dependencies [9]	0.75	0.69
Pre-release defects [6]	0.74	0.63

Used within Windows
 Development Teams for
 risk analysis, planning,
 resource allocation,
 dashboards

Windows (Vista) VPM, Binary-level

Independent Variables	Precis ion	Recal I
Size, Churn, Organization, Dependencies [1]	0.40- 0.67	0.20- 0.40

Goal

The goal of this research is to measure whether **vulnerability prediction models** built using **standard recommendations** perform well enough to provide **actionable results** for engineering resource allocation

Vulnerability Prediction Models (VPMs)

- Dependent variable: Vulnerability-prone
- Independent variables: Software metrics
- Learner: Statistical models
- Train learner, predict presence of vulnerabilities

Standard Recommendations

- Size, Churn, Complexity, Dependency Metrics
- Multiple learners "choice of learning method is far more important than which set of the available data is used for learning." [12]
- Cross-validation

HOTSOS

Actionable Results

- Actionable: Would an engineer use a VPM?
- Microsoft engineers use Defect Prediction Models (DPMs) to identify weak areas, and to plan resource allocation.
- If the VPM correctly identified vulnerabilityprone sections of code small enough to be inspected by the engineer, yes.

Measuring Actionable Results

- Inspection effort required to perform security reviews on code areas suggested by the VPM.
 – 100-1000 lines per hour [37]
- Recall (true prediction rate)
- Precision (positive prediction rate)

Research Questions

- **RQ1** Can we replicate VPMs proposed by Zimmermann et al. [1] achieving comparable prediction accuracy on binary level for two newer version of Windows?
- **RQ2** How does granularity affect classification performance?
- **RQ3** How does the choice of statistical learner affect classification performance?
- **RQ4** Are VPMs predicting vulnerable Windows binaries actionable with respect to security inspection effort?

Experiments

- Built VPMs for Windows 7, 8
- Binary- and source file-level granularities
- Dependent variable: presence of post-release vulnerabilities in first six months
- 29 Metrics
- 6 Learners
- 100-fold cross-validation of 2/3 training, 1/3 testing SRS splits

Metrics Used

- Churn metrics [5].
 - Theory: that change is more likely to introduce error than its absence. Churn measures are relative to a time period; the period for all presented calculations is between the start and RTM date of the project.
- Complexity metrics [3]
 - Theory: that more complicated code is more likely to exhibit errors.
- Dependency metrics [9]
 - Theory: the degree to which a piece of code is depended upon, or depends upon other code, influences its impact on software vulnerabilities.
- Legacy metrics.
 - Theory: Code written before Microsoft's 'Security Reset' may be more likely to contain vulnerabilities.
- Size metrics.
 - Theory: Larger source files are more prone to defects and vulnerabilities.
- Pre-Release vulnerabilities
 - Theory: "usual suspects"

Learners Used

- Logistic Regression (LR)
 - Generalized linear model using a logistic function.
- Naïve Bayes (NB)
 - Simple probabilistic classifier assuming strong independence of the independent variables.
- Recursive Partitioning (RP)
 - Decision tree variant, model represented as a binomial tree
- Support Vector Machine (SVM)
 - Classifies data by determining a separator that distinguishes the predicted classes with the largest margin.
- Tree Bagging (TB)
 - Decision tree variant, uses bootstrapping to stabilize the decision trees.
- Random forest (RF)
 - Decision tree variant, builds ensemble of decision trees

RQ1: Replicate Windows VPM performance?

• Yes

2015

HOTSOS

E OF SEC

	[Zimmerman10]	Current paper
Granularity	Binary	Binary
N Entities	1000's	1000's
% Vulnerable	"very low"	9.5
Recall	0.20-0.40	0.04-0.42
Precision	0.40-0.67	0.11-0.76

RQ2: Impact of Granularity

 Recall and Precision are much worse at source file granularity

	Windows 7		Windows 8	
	Precision	Recall	Precision	Recall
	Bi	nary level		
LR	0.5	0.12	0.32	0.09
NB	0.3	0.42	0.11	0.4
RF	0.76	0.27	0.69	0.07
RP	0.51	0.22	0.23	0.07
SVM	0.51	0.13	0.64	0.04
ТВ	0.69	0.13	0.45	0.1
	1	File level		
LR	0.01	0	0	0
NB	0.07	0.14	0.01	0.01
RF	0.47	0.02	0	0
RP	0.21	0.04	0	0
SVM	0.38	0.02	0	0
ТВ	0.36	0.03	0	0

RQ3: Impact of Learner

- Statistical learner choice does affect performance
- Naïve Bayes and Random Forests perform best on our highly imbalanced dataset

	Windows 7		Windows 8	
	Precision	Recall	Precision	Recall
	Bi	nary level		
LR	0.5	0.12	0.32	0.09
NB	0.3	0.42	0.11	0.4
RF	0.76	0.27	0.69	0.07
RP	0.51	0.22	0.23	0.07
SVM	0.51	0.13	0.64	0.04
ТВ	0.69	0.13	0.45	0.1
	1	File level		
LR	0.01	0	0	0
NB	0.07	0.14	0.01	0.01
RF	0.47	0.02	0	0
RP	0.21	0.04	0	0
SVM	0.38	0.02	0	0
ТВ	0.36	0.03	0	0

RQ4: Is our VPM actionable?

• No

HOTSOS

- Inspection effort at source file granularity is ~
 2-3 order of magnitudes smaller (< day, versus 100's of days) than binary granularity
- However, low Recall and Precision performance yield too few correct predictions and too many false positives

Other findings

- Complexity wasn't a consistent predictor of vulnerability. The correlations ranked differently between Windows 7 and 8.
- Churn was predictive
- Age was predictive (older is worse), implying that Microsoft's SDL efforts have been effective

Why such a poor VPM?

- Vulnerabilities are rare known vulnerable source files in Windows 8 comprise 1/3% of the codebase.
- Variability in learner performance suggests that we don't yet have a (good) model for how metrics indicate vulnerability-proneness. New metrics, and new approaches are needed.
- We conjecture that security domain knowledge must be added to VPMs before acceptable performance will be achieved.

Future Work

- New code, process metrics
- Focus the VPM on the Attack Surface

Attack Surface Approximation

- What if we could cut that in half?
 - "Approximating Attack Surfaces with Stack Traces", C. Theisen, K.
 Herzig, P. Morrison, B.
 Murphy, L. Williams, ICSE 2015.