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Problem Scale

• Windows 7-8
– Over 70 million lines of 

code, ~ US Eastern 
Seaboard population

• Granularity
– Binaries ~ cities
– Files ~ neighborhoods

• Objects of interest
– Defects ~ Doctors
– Vulnerabilities ~ Vascular 

surgeons



Problem

In the absence of exhaustive software testing, 
software development teams have to choose 
what, and how much, to test.  



Solution Idea

If there are machine-measurable differences 
between defect-prone code and more benign 
code, those differences can be used to automate 
identification of problematic code and focus 
verification efforts. 



Software Metrics

• Measures of code size, complexity, change, 
dependency, and other characteristics of 
source code.



Defect Prediction Models

• Researchers and practitioners have applied 
statistical prediction modeling techniques to 
various software metrics to predict defect-
prone sections of code.



Windows DPMs
Independent Variables Precision Recall

Organizational 
structure [17]

0.79 0.80

Code churn [5] 0.79 0.66

Code dependencies [9] 0.75 0.69

Pre-release defects [6] 0.74 0.63

• Used within Windows 
Development Teams for 
risk analysis, planning, 
resource allocation, 
dashboards
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Goal

The goal of this research is to measure whether 
vulnerability prediction models built using 
standard recommendations perform well 
enough to provide actionable results for 
engineering resource allocation



Vulnerability Prediction Models 
(VPMs)

• Dependent variable: Vulnerability-prone
• Independent variables:  Software metrics
• Learner: Statistical models 
• Train learner, predict presence of 

vulnerabilities



Standard Recommendations

• Size, Churn, Complexity, Dependency Metrics
• Multiple learners - “choice of learning method 

is far more important than which set of the 
available data is used for learning.” [12]

• Cross-validation



Actionable Results

• Actionable: Would an engineer use a VPM?
• Microsoft engineers use Defect Prediction 

Models (DPMs) to identify weak areas, and to 
plan resource allocation.

• If the VPM correctly identified vulnerability-
prone sections of code small enough to be 
inspected by the engineer, yes.



Measuring Actionable Results

• Inspection effort required to perform security 
reviews on code areas suggested by the VPM.
– 100-1000 lines per hour [37]

• Recall (true prediction rate)
• Precision (positive prediction rate)



Research Questions

• RQ1 Can we replicate VPMs proposed by 
Zimmermann et al. [1] achieving comparable 
prediction accuracy on binary level for two newer 
version of Windows?

• RQ2 How does granularity affect classification 
performance?

• RQ3 How does the choice of statistical learner 
affect classification performance?

• RQ4 Are VPMs predicting vulnerable Windows 
binaries actionable with respect to security 
inspection effort?



Experiments

• Built VPMs for Windows 7, 8
• Binary- and source file-level granularities 
• Dependent variable: presence of post-release 

vulnerabilities in first six months 
• 29 Metrics
• 6 Learners
• 100-fold cross-validation of 2/3 training, 1/3 

testing SRS splits



Metrics Used
• Churn metrics [5]. 

– Theory: that change is more likely to introduce error than its absence. Churn 
measures are relative to a time period; the period for all presented 
calculations is between the start and RTM date of the project. 

• Complexity metrics [3]
– Theory:  that more complicated code is more likely to exhibit errors. 

• Dependency metrics [9] 
– Theory:  the degree to which a piece of code is depended upon, or depends 

upon other code, influences its impact on software vulnerabilities. 
• Legacy metrics. 

– Theory: Code written before Microsoft’s ‘Security Reset’ may be more likely to 
contain vulnerabilities.

• Size metrics. 
– Theory: Larger source files are more prone to defects and vulnerabilities. 

• Pre-Release vulnerabilities
– Theory: “usual suspects”



Learners Used
• Logistic Regression (LR) 

– Generalized linear model using a logistic function.
• Naïve Bayes (NB)

– Simple probabilistic classifier assuming strong independence of the 
independent variables.

• Recursive Partitioning (RP)
– Decision tree variant, model represented as a binomial tree

• Support Vector Machine (SVM)
– Classifies data by determining a separator that distinguishes the predicted 

classes with the largest margin.
• Tree Bagging (TB)

– Decision tree variant, uses bootstrapping to stabilize the decision trees.
• Random forest (RF)

– Decision tree variant, builds ensemble of decision trees 



RQ1: Replicate Windows VPM 
performance?

• Yes

[Zimmerman10] Current paper

Granularity Binary Binary

N Entities 1000’s 1000’s

% Vulnerable “very low” 9.5

Recall 0.20-0.40 0.04-0.42

Precision 0.40-0.67 0.11-0.76



RQ2: Impact of Granularity

• Recall and Precision are 
much worse at source 
file granularity



RQ3: Impact of Learner

• Statistical learner 
choice does affect 
performance

• Naïve Bayes and 
Random Forests 
perform best on our 
highly imbalanced 
dataset



RQ4: Is our VPM actionable?

• No
• Inspection effort at source file granularity is  ~ 

2-3 order of magnitudes smaller (< day, versus 
100’s of days) than binary granularity

• However, low Recall and Precision 
performance yield too few correct predictions 
and too many false positives



Other findings

• Complexity wasn’t a consistent predictor of 
vulnerability.  The correlations ranked 
differently between Windows 7 and 8.

• Churn was predictive
• Age was predictive (older is worse), implying 

that Microsoft’s SDL efforts have been 
effective



Why such a poor VPM?

• Vulnerabilities are rare - known vulnerable source 
files in Windows 8 comprise 1/3% of the 
codebase.

• Variability in learner performance suggests that 
we don’t yet have a (good) model for how 
metrics indicate vulnerability-proneness. New 
metrics, and new approaches are needed.

• We conjecture that security domain knowledge 
must be added to VPMs before acceptable 
performance will be achieved.



Future Work

• New code, process metrics
• Focus the VPM on the Attack Surface



Attack Surface 
Approximation

• What if we could cut 
that in half?

• “Approximating Attack 
Surfaces with Stack 
Traces”, C. Theisen, K. 
Herzig, P. Morrison, B. 
Murphy, L. Williams, 
ICSE 2015. 
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