
Challenges with Applying
Vulnerability Prediction Models

Patrick Morrison1, Kim Herzig2, Brendan Murphy2,
Laurie Williams1

1Department of Computer Science, North Carolina
State University

2Microsoft Research, Cambridge, UK
pjmorris@ncsu.edu kimh@microsoft.com

bmurphy@microsoft.com lawilli3@ncsu.edu

Problem Scale

• Windows 7-8
– Over 70 million lines of

code, ~ US Eastern
Seaboard population

• Granularity
– Binaries ~ cities
– Files ~ neighborhoods

• Objects of interest
– Defects ~ Doctors
– Vulnerabilities ~ Vascular

surgeons

Problem

In the absence of exhaustive software testing,
software development teams have to choose
what, and how much, to test.

Solution Idea

If there are machine-measurable differences
between defect-prone code and more benign
code, those differences can be used to automate
identification of problematic code and focus
verification efforts.

Software Metrics

• Measures of code size, complexity, change,
dependency, and other characteristics of
source code.

Defect Prediction Models

• Researchers and practitioners have applied
statistical prediction modeling techniques to
various software metrics to predict defect-
prone sections of code.

Windows DPMs
Independent Variables Precision Recall

Organizational
structure [17]

0.79 0.80

Code churn [5] 0.79 0.66

Code dependencies [9] 0.75 0.69

Pre-release defects [6] 0.74 0.63

• Used within Windows
Development Teams for
risk analysis, planning,
resource allocation,
dashboards

Windows DPMs
Independent Variables Precision Recall

Organizational
structure [17]

0.79 0.80

Code churn [5] 0.79 0.66

Code dependencies [9] 0.75 0.69

Pre-release defects [6] 0.74 0.63

• Used within Windows
Development Teams for
risk analysis, planning,
resource allocation,
dashboards

Independent Variables Precis
ion

Recal
l

Size, Churn, Organization,
Dependencies [1]

0.40-
0.67

0.20-
0.40

Windows (Vista) VPM, Binary-level

Goal

The goal of this research is to measure whether
vulnerability prediction models built using
standard recommendations perform well
enough to provide actionable results for
engineering resource allocation

Vulnerability Prediction Models
(VPMs)

• Dependent variable: Vulnerability-prone
• Independent variables: Software metrics
• Learner: Statistical models
• Train learner, predict presence of

vulnerabilities

Standard Recommendations

• Size, Churn, Complexity, Dependency Metrics
• Multiple learners - “choice of learning method

is far more important than which set of the
available data is used for learning.” [12]

• Cross-validation

Actionable Results

• Actionable: Would an engineer use a VPM?
• Microsoft engineers use Defect Prediction

Models (DPMs) to identify weak areas, and to
plan resource allocation.

• If the VPM correctly identified vulnerability-
prone sections of code small enough to be
inspected by the engineer, yes.

Measuring Actionable Results

• Inspection effort required to perform security
reviews on code areas suggested by the VPM.
– 100-1000 lines per hour [37]

• Recall (true prediction rate)
• Precision (positive prediction rate)

Research Questions

• RQ1 Can we replicate VPMs proposed by
Zimmermann et al. [1] achieving comparable
prediction accuracy on binary level for two newer
version of Windows?

• RQ2 How does granularity affect classification
performance?

• RQ3 How does the choice of statistical learner
affect classification performance?

• RQ4 Are VPMs predicting vulnerable Windows
binaries actionable with respect to security
inspection effort?

Experiments

• Built VPMs for Windows 7, 8
• Binary- and source file-level granularities
• Dependent variable: presence of post-release

vulnerabilities in first six months
• 29 Metrics
• 6 Learners
• 100-fold cross-validation of 2/3 training, 1/3

testing SRS splits

Metrics Used
• Churn metrics [5].

– Theory: that change is more likely to introduce error than its absence. Churn
measures are relative to a time period; the period for all presented
calculations is between the start and RTM date of the project.

• Complexity metrics [3]
– Theory: that more complicated code is more likely to exhibit errors.

• Dependency metrics [9]
– Theory: the degree to which a piece of code is depended upon, or depends

upon other code, influences its impact on software vulnerabilities.
• Legacy metrics.

– Theory: Code written before Microsoft’s ‘Security Reset’ may be more likely to
contain vulnerabilities.

• Size metrics.
– Theory: Larger source files are more prone to defects and vulnerabilities.

• Pre-Release vulnerabilities
– Theory: “usual suspects”

Learners Used
• Logistic Regression (LR)

– Generalized linear model using a logistic function.
• Naïve Bayes (NB)

– Simple probabilistic classifier assuming strong independence of the
independent variables.

• Recursive Partitioning (RP)
– Decision tree variant, model represented as a binomial tree

• Support Vector Machine (SVM)
– Classifies data by determining a separator that distinguishes the predicted

classes with the largest margin.
• Tree Bagging (TB)

– Decision tree variant, uses bootstrapping to stabilize the decision trees.
• Random forest (RF)

– Decision tree variant, builds ensemble of decision trees

RQ1: Replicate Windows VPM
performance?

• Yes

[Zimmerman10] Current paper

Granularity Binary Binary

N Entities 1000’s 1000’s

% Vulnerable “very low” 9.5

Recall 0.20-0.40 0.04-0.42

Precision 0.40-0.67 0.11-0.76

RQ2: Impact of Granularity

• Recall and Precision are
much worse at source
file granularity

RQ3: Impact of Learner

• Statistical learner
choice does affect
performance

• Naïve Bayes and
Random Forests
perform best on our
highly imbalanced
dataset

RQ4: Is our VPM actionable?

• No
• Inspection effort at source file granularity is ~

2-3 order of magnitudes smaller (< day, versus
100’s of days) than binary granularity

• However, low Recall and Precision
performance yield too few correct predictions
and too many false positives

Other findings

• Complexity wasn’t a consistent predictor of
vulnerability. The correlations ranked
differently between Windows 7 and 8.

• Churn was predictive
• Age was predictive (older is worse), implying

that Microsoft’s SDL efforts have been
effective

Why such a poor VPM?

• Vulnerabilities are rare - known vulnerable source
files in Windows 8 comprise 1/3% of the
codebase.

• Variability in learner performance suggests that
we don’t yet have a (good) model for how
metrics indicate vulnerability-proneness. New
metrics, and new approaches are needed.

• We conjecture that security domain knowledge
must be added to VPMs before acceptable
performance will be achieved.

Future Work

• New code, process metrics
• Focus the VPM on the Attack Surface

Attack Surface
Approximation

• What if we could cut
that in half?

• “Approximating Attack
Surfaces with Stack
Traces”, C. Theisen, K.
Herzig, P. Morrison, B.
Murphy, L. Williams,
ICSE 2015.

	Challenges with Applying Vulnerability Prediction Models
	Problem Scale
	Problem
	Solution Idea
	Software Metrics
	Defect Prediction Models
	Windows DPMs
	Windows DPMs
	Goal
	Vulnerability Prediction Models (VPMs)
	Standard Recommendations
	Actionable Results
	Measuring Actionable Results
	Research Questions
	Experiments
	Metrics Used
	Learners Used
	RQ1: Replicate Windows VPM performance?�
	RQ2: Impact of Granularity
	RQ3: Impact of Learner
	RQ4: Is our VPM actionable?
	Other findings
	Why such a poor VPM?
	Future Work
	Attack Surface Approximation

