Detecting Abnormal User Behavior Through Pattern-mining Input Device Analytics

Ignacio X. Domínguez, Alok Goel, David L. Roberts, and Robert St. Amant

North Carolina State University

Abnormal

- Abnormal:¹
 - Different from what is normal or average
 - Unusual, especially in a way that causes problems
- Practical examples of abnormal behavior detection:
 - Bots

NC STATE

- Not proper attention to the task
- Intrusion
- Knowledge

¹ "abnormal." Merriam-Webster.com. 2015. http://www.merriam-webster.com (6 Apr 2015).

Human Interactive Proofs (HIPs)

 Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)

• Disruptive

- Adds cognitive burden to the user
- Single-point check
- Not applicable to every domain

NC STATE

4/19/2015

Human Observational Proofs (HOPs)

- Observe behavior to make sure it looks like something a human would produce
- Problems solved:
 - Unobtrusive
 - Constant
- Can we do better?

NC STATE

Idea: Human Subtlety Proofs

- Expand on the idea of HOPs
- Use cognitive models of interaction to classify behavior

• Improvements:

NC STATE

• More precise

4/19/2015

• More expressive (can identify cognitive state)

Hypotheses

4/19/2015

NC STATE

- 1. Different cognitive processes will translate into differences in how people use input devices
- 2. Those differences cannot be hidden by people, even if they try

4/19/2015

NC STATE

Evaluation

4/19/2015

- Simulating real-world complexities
 e.g., Ben Schneiderman's Direct manipulation¹
- Tightly control variables
- Fun!

NC STATE

[1] Ben Shneiderman and Pattie Maes. 1997. Direct manipulation vs. interface agents. *interactions* 4, 6 (November 1997), 42-61. http://doi.acm.org/10.1145/267505.267514

4/19/2015

The Concentration Game

- Web-based (Flash)
- 16 (4x4) 100-pixel tiles
- Letters instead of pictures
 - Helvetica Neue LT Std 65 Medium
- Random positions

NC STATE

The Concentration Game With a Twist

Reveal mode

Detecting Abnormal User Behavior Through Pattern-mining Input Device Analytics

4/19/2015

Reveal Mode

- Does not interfere with mouse patterns (uses space bar)
- The same mechanics are required to accomplish the same goal
- Relies on visual search rather than on memory recall
 - Therefore, the cognitive process required to solve the task is different

NC STATE

Experimental Conditions

- 1. Reveal mode disabled
- 2. Reveal mode discouraged Detection module enabled
- 3. Reveal mode encouraged Detection module disabled
- 4. Reveal mode enabled No mention of reveal mode or detection module in instructions

Gender	Cheating Disabled	Cheating Discouraged	Cheating Encouraged	Cheating Allowed
Female	1	4	6	0
Male	11	11	5	11
Total	12	15	11	11

NC STATE

Analysis and Results

4/19/2015

Different Types of Round

No reveal

Reveal mode was never active during the round

• Full reveal

Reveal mode was always active during the round

• Partial reveal

Reveal mode was toggled at least once during the round

• Mixed reveal Full reveal + partial reveal

4/19/2015

NC STATE

Different Types of Round

NC STATE

4/19/2015

Three Separate Analyses

• Analysis 1

No reveal vs. Mixed reveal

• Analysis 2 No reveal vs. Full reveal

• Analysis 3

NC STATE

No reveal vs. Full reveal vs. Partial reveal

Method

- Random forest classifier
- 1000 estimators
- 10-fold cross-validation

4/19/2015

NC STATE

Attributes

- Time between clicks (ms)
- Time between a click and a succeeding mouse movement (ms)
- Count of change in direction of mouse motion
- Screen region hover count
- Task completion time (ms)
- Total number of clicks

4/19/2015

NC STATE

Analysis 1

Classification type	Experimental Condition	Instances	Accuracy	Precision	Recall	F-score
	Cheating disabled	120	93.33%	0.93	1.00	0.97
	Cheating discouraged	150	84.00%	1.00	0.63	0.77
Analysis 1	Cheating encouraged	110	93.64%	0.94	0.87	0.91
-	Cheating allowed	110	87.27%	0.94	0.55	0.70
	Global	490	89.18%	0.83	0.95	0.88

Detecting Abnormal User Behavior Through Pattern-mining Input Device Analytics

- Can detect different input device usage patterns (H1)
- Even if people try to hide their behavior, can still detect these patterns (H2)

• Classes

NC STATE

• No reveal (43.67%)

4/19/2015

• Mixed reveal (56.33%)

Analysis 2

Classification type	Experimental Condition	Instances	Accuracy	Precision	Recall	F-score
	Cheating disabled	120	100.00%	1.00	1.00	1.00
	Cheating discouraged	87	95.40%	1.00	0.91	0.95
Analysis 2	Cheating encouraged	67	100.00%	1.00	1.00	1.00
-	Cheating allowed	41	100.00%	1.00	1.00	1.00
	Global	315	98.73%	1.00	0.96	0.98

- More accurate than Analysis 1
 - 98.73% vs. 89.18%
 - Mixed reveal is more fuzzy
- A few false negatives missed a few
- Can detect different input device usage patterns (H1)
- Even if people try to hide their behavior, can still detect these patterns (H2)

Classes

- No reveal (67.94%)
- Full reveal (32.06%)

4/19/2015

NC STATE

Analysis 3

			N	o reve	al	Fu	ıll reve	eal	Par	tial re	veal
Experimental Condition	Instances	Accuracy	\mathbf{P}_1	\mathbf{R}_1	\mathbf{F}_1	\mathbf{P}_2	\mathbf{R}_2	\mathbf{F}_2	P_3	\mathbf{R}_3	\mathbf{F}_3
Cheating disabled	120	90.83%	1.00	0.88	0.94	N/A	N/A	N/A	N/A	N/A	N/A
Cheating discouraged	150	72.67%	0.65	0.95	0.77	0.85	0.72	0.78	0.75	0.81	0.78
Cheating encouraged	110	85.45%	0.84	1.00	0.91	0.84	0.87	0.86	0.89	0.81	0.85
Cheating allowed	110	75.45%	0.58	0.88	0.70	0.69	0.83	0.75	0.89	0.80	0.84
Global	490	80.61%	0.83	0.92	0.87	0.80	0.79	0.80	0.76	0.89	0.82

• Can detect different input device usage patterns (H1)

• Classes

NC STATE

- No reveal (43.67%)
- Full reveal (20.61%)
- Partial reveal (35.71%)

 Even if people try to hide their behavior, can still detect these patterns (H2)

Limitations

- Not validated on other domains
- Only considers entire rounds
- Different tasks may produce interaction patterns that are difficult to differentiate
- Does not consider task-specific metrics

4/19/2015

Human Subtlety Proofs: Reprise

- Expand on the idea of HOPs
- Use cognitive models of interaction to classify behavior

- Improvements:
 - More precise
 - More expressive (can identify cognitive state)

NC STATE

Conclusions and Future Work

4/19/2015

NC STATE

Conclusions

- By introducing reveal mode, mouse interaction patterns changed
- We were able to detect these different mouse interaction patterns This confirms Hypothesis 1
- When discouraging reveal mode, people who used it tried to conceal their behavior

We can still detect the use of reveal mode with high accuracy.

This confirms Hypothesis 2

Future Work

- See if accuracy is improved by including task-specific metrics
- Online detection
- Explore other domains
 - Same physical manifestations of cognitive processes?
 - More traditional tasks
- Explore other types of input devices
 - Typing game
 - Combinations of input devices

4/19/2015

NC STATE

Detecting Abnormal User Behavior Through Pattern-mining Input Device Analytics

Ignacio X. Domínguez, Alok Goel, David L. Roberts, and Robert St. Amant

{ignacioxd, agoel2}@ncsu.edu, {robertsd, stamant}@csc.ncsu.edu

Q & A

http://ciigar.csc.ncsu.edu/

Appendices

4/19/2015

NC STATE

Descriptive Statistics

Feature	No Reveal	Mixed Reveal	Partial Reveal	Full Reveal
Time between clicks (ms)	1726.84 (686.20)	2360.06(1814.52)	2728.32 (1739.83)	1721.97 (1763.61)
Time between a click and a				· · · · · · · · · · · · · · · · · · ·
succeeding mouse movement (ms)	279.36(164.64)	301.49(487.16)	367.93(581.04)	186.37 (206.55)
Count of change in direction				· · · · · · · · · · · · · · · · · · ·
of mouse motion	389.87(148.16)	299.64(225.69)	310.12(182.52)	281.50(284.53)
Screen region hover count	119.77(36.91)	78.41 (45.49)	84.33 (41.29)	68.16(50.34)
Task completion time (ms)	50420.80(19786.68)	45809.62 (32749.42)	54850.41 (31071.80)	30144.89 (29513.26)
Total number of clicks	29.14 (6.51)	19.10 (4.98)	20.50(5.61)	16.67(2.02)
Instances	214	276	175	101

Averages (and Std)

4/19/2015

NC STATE

Data Distribution Across Classes

	Analysis 1	Analysis 2	Analysis 3
No reveal	Class 1 (43.67%)	Class 1 (67.94%)	Class 1 (43.67%)
Full reveal		Class 2 (32.06%)	Class 2 (20.61%)
Partial reveal			Class 3 (35.71%)
Mixed reveal	Class 2 (56.33%)		

4/19/2015

NC STATE