
Fuzzing
and how to evaluate it

Michael Hicks
The University of Maryland

Joint work with George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei
HotSOS 2020UM

Presented at
ACM CCS

Conference,
October 2018

Won NSA
Best

Scientific
Cybersecurity
Paper Award,

Sep. 2019

• The paper looks critically at the how potential advances
in fuzz testing are evaluated scientifically

• This talk will cover the content in that paper, which is
still relevant today

How should we scientifically evaluate potential
advances in randomized testing (fuzzing) technology?

• I will also briefly look at the impact of the paper since it
was published — have things changed?

What is fuzzing?
• A kind of testing based on random input generation

• Goal: make sure certain bad things don’t happen,
no matter what

• Crashes, thrown exceptions, non-termination
• All of these things can be the foundation of security

vulnerabilities

• Complements functional testing
• Test features (and lack of misfeatures) directly
• Normal tests can be starting points for fuzz tests

File-based fuzzing
• Mutate or generate inputs (e.g., according to a grammar)
• Run the target program with them
• See what happens
• Repeat

XXX
XXX
XXX

XXX
y36
XXz
mmm

American Fuzzy Lop (AFL)
• AFL is a mutation-based, gray-box fuzzer - de-facto standard

• Instrument target to gather tuple of <ID of current code location,
ID last code location>

- On Linux, the optional QEMU mode allows black-box binaries to be fuzzed
• Retain test input to create a new one if coverage profile updated

- New tuple seen, or existing one a substantially increased number of times
- Mutations include bit flips, arithmetic, other standard stuff

% afl-gcc -c … -o target
% afl-fuzz -i inputs -o outputs target
afl-fuzz 0.23b (Sep 28 2014 19:39:32) by <lcamtuf@google.com>
[*] Verifying test case 'inputs/sample.txt'...
[+] Done: 0 bits set, 32768 remaining in the bitmap. …
———————
Queue cycle: 1n time : 0 days, 0 hrs, 0 min, 0.53 sec …

http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Active Area of Research
• Black box: CERT Basic Fuzzing Framework (BFF),

Zzuf, …

• Gray box: VUzzer, Fairfuzz, T-Fuzz, AFLFast,
Angorra, Parmesan, Zest, EcoFuzz, GREYONE,…

• White box: KLEE, angr, SAGE, Mayhem, …

• Hybrid: Pangolin, QSYM, Driller, …

There are many more …

Evaluating Fuzzing
an adventure in the scientific method

Assessing Progress
• Since fuzzing is an active area, we can assume the

technology is getting better, right?

• To know, claims must be supported by empirical
evidence

• I.e., that a new fuzzer is more effective at finding
vulnerabilities than a baseline on a realistic workload

• Is the evidence reliable?

Fuzzing Evaluation Recipe
for Advanced Fuzzer (call it A)

• A compelling baseline fuzzer B to compare against

• A sample of target programs (benchmark suite)
• Representative of larger population

• A performance metric
• Ideally, the number of bugs found (else a proxy)

• A meaningful set of configuration parameters
• Notably, justifable seed file(s), timeout

• A sufficient number of trials to judge performance
• Comparison with baseline using a statistical test

Requires

Assessing Progress
• We looked at 32 published papers from 2012-2018

and compared their evaluation to our template
• What target programs, seeds and timeouts did they

choose and how did they justify them?
• Against what baseline did they compare?
• How did they measure (or approximate) performance?
• How many trials did they perform, and what statistical

test?

• We found that most papers did some things right,
but none were perfect

• Raises questions about the strength of published results

Measuring Effects
• Failure to follow the template may not mean

reported results are wrong
• Potential for wrong conclusions

• We carried out experiments to start to assess this
potential

• Goal is to get a sense of whether the evaluation
problem is real

• Short answer: There are problems
• So we provide some recommended mitigations

Summary of Results
• Less than half of papers measure multiple runs

• Fewer still consider variance across runs
• And yet fuzzer performance can vary substantially from run to run

• Papers often choose small number of target programs, with a small
common set

• And yet they target the same population
• And performance can vary substantially

• Few papers justify the choice of seeds or timeouts
• Yet seeds strongly influence performance,
• And trends can change over time

• Many papers use heuristics to relate crashing inputs to bugs
• Yet these heuristics have not been evaluated
• We find that they dramatically overcount bugs

Don’t Researchers Know Better?
• Yes, many do. Even so, experts forget or are nudged

away from best practice by culture and circumstance
• Especially when best practice is more effort

• Solution: List of recommendations
• And identification of open problems

• Inspiration for effort to provide checklist broadly
• SIGPLAN Empirical Evaluation Guidelines
• http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/

Outline
• Preliminaries

• Papers we looked at
• Categories we considered
• Experimental setup

• Results by category, with recommendations
• Statistical Soundness
• Seed selection
• Timeouts
• Performance metric
• Benchmark choice

• Updates throughout, based on where we are in 2020!

• 32 papers (2012-2018)
• Started from 10 high-impact

papers, and chased
references

• Plus: Keyword search
• Disparate goals

• Improve initial seed
selection

• Smarter mutation (e.g.,
based on taint data)

• Different observations (e.g.,
running time)

• Faster execution times,
parallelism

• Etc.

Experimental Setup
• Advanced Fuzzer: AFLFast (CCS’16), Baseline: AFL

• Five target programs used by previous fuzzers
• Three binutils programs: cxxfilt, nm, objump (AFLFast)
• Two image processing ones: gif2png (VUzzer), FFmpeg

(fuzzsim)

• 30 trials (more or less) at 24 hours per run
• Empty seed, sampled seed, others
• Mann Whitney U test

• Experiments on de-duplication effectiveness

Since 2018
• To prepare this talk, I looked at 15 fuzzer papers published

in top conferences in 2018-2020
• USENIX Security, IEEE S&P, ISSTA, ICSE, ACSAC
• Not comprehensive (ran out of time), but hopefully not far off

• Compared them against the same criteria. Are they doing
things as we recommended?

Since 2018
Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, Driller, Q 5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H

EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H

FiFUZZ Sec 2020 R(9) R(5-
binutils)

A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage (JS) Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H

Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H

UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, libFuzzer, R 10 “within 5%” G, S-ASAN(1) E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

Statistical Soundness

Fuzzing is a Random Process
• The mutation of the input is chosen randomly by the

fuzzer, and the target may make random choices

• Each fuzzing run is a sample of the random process
• Question: Did it find a crash or not?

• Samples can be used to approximate the
distribution

• More samples give greater certainty

• Is A better than B at fuzzing? Need to compare
distributions to make a statement

Analogy: Biased Dice
• We want to compare the “performance” of two dice

• Die A is better than die B if it tends to land on higher
numbers more often (biased!)

• Suppose rolling A and B yields 6 and 1. Is A better?
• Maybe. But we don’t have enough information. One trial is

not enough to characterize a random process.

Multiple Trials
• What if I roll A and B five times each and get

• A: 6, 6, 1, 1, 6
• B: 4, 4, 4, 4, 4
• Is A better?

• Could compare average measures
• median(A) = 6, median(B) = 4
• mean(A) = 4, mean(B) = 4
• The first suggests A is better, but the second does not
• And there is still uncertainty that these comparisons

hold up after more trials

Statistical Tests
• A mechanism for quantitatively accepting or rejecting a

hypothesis about a process

• In our case, the process is fuzz testing and the
hypothesis is that fuzz tester A (a “random variable”) is
better than B at finding bugs in a particular program,
e.g., that median(A) - median(B) ≥ 0 for that program

• The confidence of our judgment is captured in the p-
value

• It is the probability that the outcome of the test is wrong
• Convention: p-value ≤ 0.05 is a sufficient level of

confidence

• Use the Student T test ?
• Meets the right form for the test
• But assumes that samples (fuzz

test inputs) drawn from a normal
distribution. Certainly not true

• Arcuri & Briand advice: Use the
Mann Whitney U Test

• No assumption of distribution
normality

ICSE 2011

Evaluations
• 17/32 papers said nothing

about multiple trials
• Assume 1

• 15/32 papers said multiple
trials

• Varying number; one case
not specified

• 3/13 papers characterized
variance across runs

• 0 papers performed a
statistical test

Practical Impact?
• Fuzzers run for a long time, conducting potentially millions

of individual tests over many hours
• If we consider our biased die: Perhaps no statistical

comparison is needed (just the mean/median) if we have a
lot of tests?

• Problem: Fuzzing is a stateful search process
• Each test is not independent, as in a die roll

- Rather, it is influenced by the outcome of previous tests
• The search space is vast; covering it all is difficult

• Therefore, we should consider each run as a trial, and
consider many trials

• Experimental results show potentially high per-trial variance

Performance Plot

median

min

max

95%
95%

Performance Plot

median

min

max

95%
95%

median

min

max

95%
95%

p < 10-13 p < 10-10

Statistically Significant

Higher median
clearly better

significant variance
in performance

p = 0.0676p = 0.379

Statistically Insignificant

Max AFL = 550
Min AFLFast = 150

Higher median
does not meet bar

for significance

I Want You
to run multiple trials

and

use a statistical test to
compare distributions!

How are things in late 2020? Better!
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora,

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q,

libFuzzer, R
10 “within

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

• 14/15 had multiple trials
• Varying number; 5

typical

• 7/14 papers performed
a statistical test

• Most use M-W U
- One also used A12 effect

size
• 2 didn’t say which test

• 3/7 said something
about variance

Seed Selection

Seed Corpus
• Mutation-based fuzzers require an initial seed (or

seeds) to start the process

• Conventional wisdom: Valid input, but small
• Valid, to drive the program into its “main” logic
• Small, to complete test more quickly

• Some studies on how to choose seeds
• Applied to black box fuzzer; relevant to gray box?

• How might seed choices matter?

Evaluations
• 30/32 papers used non-

empty seed
• 10 say nothing else (N)
• 9 used valid seed but no

details (V)

• 2/32 papers used the
empty (E) file (eg. AFLFast)

• Good “default” choice in
vast configuration space

• But contrary to practice

• Question: Practical impact?

Experiments
• Empty seed

• Sampled from FFmpeg site (http://samples.
mpeg.org)

• All less than 1 MB
• Picked smallest one

• Made with FFmpeg itself (using videogen and
audiogen programs)

• Also sampled and made object files for nm and
objdump, and text for cxxfilt

http://mpeg.org
http://mpeg.org

empty seed
(AFLFast vs. AFL) p = 0.379
(AFLDumb vs. AFL) p < 10-15

FFMpeg: Empty vs. Handmade

1-made
p = 0.048
p < 10-11

Empty seed (surprisingly) useful

1-sampled
(AFLFast vs. AFL) p > 0.05

(AFLDumb vs. AFL) p < 10-5

FFMpeg: Sampled vs. Handmade

1-made
p = 0.048
p < 10-11

Both “valid”, but very different performance

~100 crashes
<5 crashes

Seed Corpus: Recommendations
• Performance with different seeds varies dramatically

• Not all “valid” seeds are the same

• The empty seed can perform well
• Contrary to conventional wisdom

• Evaluations should clearly document seed choices

• Evaluations should consider several seeds,
including empty seed

• Multiple trials to sample large, random space; likewise,
want to sample large, disparate space of seeds

• Need more research to understand this better

How are things in late 2020? Same
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora,

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q,

libFuzzer, R
10 “within

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

• Very little said about
the particulars of seed
selection

• Usually valid seeds
were used,

- sometimes mentioned how
many,

- sometimes mentioned how
produced

• No specific mention of
the use of an empty
seed

Timeouts

Evaluations
• 10/32 papers ran 24 hours

• 7/32 papers ran 5 or 6 hours

• Others less, or much more
• Minutes … or months!

• Question: How much does
this choice matter?

p < 10-13 p < 10-10

Trends can be Stable

AFLFast better at
5, 8, 24 hours

3-sampled
6 hours: p < 10-13 AFLFast is better
24 hours: p = 0.000105 AFL is better

Trends can Change

Can take time for
fuzzing to “warm up”

Timeouts: Recommendations
• Longer timeouts are better because they subsume

shorter ones
• Using plots like ones we’ve shown earlier, performance can

be compared at different points in time

• But there is a practical limit to long timeouts
• Hard to work on substantial program corpus over weeks or

months

• 24 hours seems like a good target … maybe?
• Ecologically relevant

- But longer would be even better!
• Subsumes common 5 and 8 hour limits
• Not great principles for choosing it

How are things in late 2020? Good
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora,

Driller, Q
5 M-W G, S-

UBSAN(1
)*

L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q,

libFuzzer, R
10 “within

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

• 13/15 papers used 24
hours or more

• 2 papers fuzzed a long
time

• 72 hours on 88
processors in parallel

• 3 months

Assessing
Performance

Performance Metrics
• Ultimate “ground truth”: Bugs

• Finding lots of different inputs whose root cause is the
same bug is not that useful (maybe, harmful!)

• Some benchmarks designed with known bugs
• Crash has telltale sign

• For others: Which crash signals which bug?

• Heuristics: Stack hash and coverage (AFL CMIN)

Evaluations
• 7 used AFL CMIN (“unique

crashes”) (C)

• 7 used stack hashes (S)

• 7 assessed ground truth
perfectly (G)

• 8 others did, in part (“case
study”, G*)

• For C and S: How effective
at predicting G?

(Fuzzy) Stack Hashes
• Idea: Identify bug according to the stack at the

time of the crash (return addresses)
• Or: Limit attention to the top N frames (where N is

between 3 and 5 in most papers)

• Rationale: Faulting location highly indicative of
source of bug

• Stack provides useful context (i.e., when faulting
function given a input, only from certain caller)

• But some “context” may be superfluous
- Assume: frames closer to bug more relevant

False Positives and Negatives
void f() { … format(s1); … }
void g() { … format(s2); … }
void format(char *s) {
 //bug: corrupt s
 prepare(s);
}
void prepare(char *s) {
 output(s);
}
void output(char *s) {
 //failure manifests
}

• With N=3, distinct calls to
format from f and g will be
conflated, properly

• But with N=5, calling format
from f and g are made distinct

• Overcounting

• With N=2, a bug in a different
caller to prepare that
corrupts its argument will be
conflated with the format bug

• Undercounting

AFL CMIN
• A crashing input is considered “unique” if either

• the coverage profile includes an edge (“tuple”) not seen
in any of the previous crashes

• the profile is missing a tuple always present in earlier
faults

• AFL calls this CMIN
• Docs justify it by mentioning the issues with stack hashes

• CMIN may also suffer from inflated counts (false
positives)

• Many superfluously different paths to the same fault-point
are treated as distinct

Assessing Heuristics: cxxfilt
• Used commit history to find

patches since fuzzed version
• E.g., commit on left fixes integer

overflow

• Applied patches iteratively, and re-
ran against all 57,000+ crashing
inputs (post-CMIN, all 30 runs)
• Those that no longer crash are due

to this patch
• Broke apart patches that fix multiple

bugs

• Re-run must account for non-
determinism
• Used ASAN/UBSAN: “non crash”

only if it found no issue

Stack Hashes (N=3)
• 57,040 inputs handled by bugfix

• 98 inputs never fixed
• 4 inputs “fixed” but due to some

source of nondeterminism

• In general: Far less over
counting

• At most 596 hashes for 9 bugs
• vs. 57,040 inputs for 9 bugs

• Hashes have false negatives
• Bug B has 343 hashes that apply

just to this bug, but 19 that apply
to others too

cxxfilt: AFL CMIN vs. Bugs
• No trial found more than 8 bugs

• Out of 9 total

• 3 bugs account for most
crashing inputs
• many bugs have few inputs
• so counting inputs misleading

• Number of crashing inputs
correlates with number of bugs,
but only loosely

• Mann Whitney p-value is .066 for
AFLFast bugs > AFL bugs
• vs. 10-10 for “unique” crashes

Metrics Summary
• This is just one program and set of fuzzing results,

but it shows the potential for heuristics to
• Massively overcount bugs (false positives)
• Miss bugs (false negatives)
• The good news is that the situation seems tilted toward

the former

• As such, it seems prudent to attempt to measure
ground truth directly

• Use benchmarks with known bugs
• Might still use other programs, to avoid overfitting

How are things in late 2020? Better
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora,

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q,

libFuzzer, R
10 “within

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

• 14/15 papers’ results
based on ground truth

• At least for part of their
benchmarks

• 10/15 also used “unique
crashes”

• Varying levels of extra
effort to avoid over/
undercounts

- ASAN or UBSAN
instrumentation

• 11/15 also measured
code coverage

Target Programs

Evaluations
• 30/32 used real programs

• Median of 7, as many as 100
• 2/32 use Google Fuzz Suite
• Fair/sufficient sample?

• 9/32 purposely-vulnerable
programs (or injected bugs)

• 5 use LAVA-M
• 4 use CGC
• Ecological validity?

p = 0.379

Binutils vs. Image proc.

p < 10-13

From AFLFast paper From VUzzer paper

Google Fuzz Test Suite
• https://github.com/google/fuzzer-test-suite

• 24 programs and libraries with known bugs
• OpenSSL, PCRE, SQLite, libpng, libxml2, libarchive, …

• Comes with harness to connect to AFL and libfuzzer
• And confirm when a bug is discovered

• This is a sort of regression suite, so its generality is
not entirely clear

• Also, Google OSS-Fuzz project
• https://github.com/google/oss-fuzz

https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz
https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz

Cyber Grand Challenge
• CGC is a suite of 296 programs constructed for

DARPA’s Cyber Grand Challenge
• Intended to be ecologically valid, but also intended

to be challenging (gamification)
• Validity not confirmed (e.g., mean size is 1800 LOC)
• And subset in many papers

• Good feature: Known ground truth (telltale sign
when bug is triggered)

• https://github.com/trailofbits/cb-multios

https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios

LAVA-M
• LAVA is a bug injection methodology that adds “magic

number checks” to inputs that otherwise do not affect
control flow (much)

• LAVA-M is the result of using it to inject bugs in four open-
source programs (base64, md5sum, uniq, and who)

• 2000+ bugs injected in who (!)

• “A significant chunk of future work for LAVA involves
making the generated corpora look more like the bugs
that are found in real programs.”

• http://moyix.blogspot.com/2016/10/the-lava-synthetic-
bug-corpora.html

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html

How are things in late 2020? Better
Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora,

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL,
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q,

libFuzzer, R
10 “within

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal
statistical
variations”

G(*), S L R(4) 12 H

• Standard benchmarks
in greater use

• 7/15 use LAVA-M
• 3/15 use GoogleTS
• 1/15 use CGC
• All provide ground truth

• Real-world programs
often diverse, used
before

• Some impressive
choices: 19 programs in
one case!

A Fuzzing Benchmark?
• A substantial (large) sample of relevant programs (look

at the breadth of existing fuzzing papers)
• Some justification for ecological validity

• Should know ground truth

• Fuzzers should not overfit to the benchmark
• Perhaps run a sample from a larger population
• May want to include non-benchmark programs too, despite

not necessarily having ground truth
• Regular competition, like SAT competition?

• Google Fuzz, CGC, LAVA-M, current papers may be
good starting points

New! FuzzBench
• https://github.com/google/fuzzbench

SIGPLAN Guidelines

Our paper

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

New! FuzzBench
• https://github.com/google/fuzzbench

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

New! FuzzBench
• https://github.com/google/fuzzbench

• 21 programs and libraries with known bugs
• OpenSSL, SQLite3, WolfSSL, Zlib, Libpng, LibPCAP, ..
• Can use any OSS-Fuzz project as a benchmark

• Connects to many fuzzers

• Measures (via 20 trials, 24 hours)
• Median total edge coverage, and over time, per

program. Graphs median.
• Missing: measurement based on ground-truth bugs

- Stated plans to add it

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

Summary: Do’s and Don’ts
• Do assess a random process using multiple trials and

a statistical test
• Don’t run just one trial
• Don’t compute just the mean/median

• Don’t use heuristics as only performance measure
• Some results should be based on ground truth

• Do clarify choice of seed
• Evaluate several, including the empty seed

• Do use longer timeout and measure performance over
time

• Use a good benchmark suite (to be developed!)

General advice: SIGPLAN guidelines!

http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/

