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• The paper looks critically at the how potential advances 
in fuzz testing are evaluated scientifically 

• This talk will cover the content in that paper, which is 
still relevant today 

How should we scientifically evaluate potential 
advances in randomized testing (fuzzing) technology?

• I will also briefly look at the impact of the paper since it 
was published — have things changed?



What is fuzzing?
• A kind of testing based on random input generation 

• Goal: make sure certain bad things don’t happen, 
no matter what

• Crashes, thrown exceptions, non-termination
• All of these things can be the foundation of security 

vulnerabilities 

• Complements functional testing
• Test features (and lack of misfeatures) directly 
• Normal tests can be starting points for fuzz tests



File-based fuzzing
• Mutate or generate inputs (e.g., according to a grammar) 
• Run the target program with them 
• See what happens
• Repeat

XXX
XXX
XXX
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American Fuzzy Lop (AFL)
• AFL is a mutation-based, gray-box fuzzer - de-facto standard 

• Instrument target to gather tuple of <ID of current code location, 
ID last code location> 

- On Linux, the optional QEMU mode allows black-box binaries to be fuzzed 
• Retain test input to create a new one if coverage profile updated 

- New tuple seen, or existing one a substantially increased number of times 
- Mutations include bit flips, arithmetic, other standard stuff

% afl-gcc -c … -o target
% afl-fuzz -i inputs -o outputs target
afl-fuzz 0.23b (Sep 28 2014 19:39:32) by <lcamtuf@google.com>
[*] Verifying test case 'inputs/sample.txt'...
[+] Done: 0 bits set, 32768 remaining in the bitmap. …
———————
Queue cycle: 1n time : 0 days, 0 hrs, 0 min, 0.53 sec …

http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/




Active Area of Research
• Black box: CERT Basic Fuzzing Framework (BFF), 

Zzuf, …  

• Gray box: VUzzer, Fairfuzz, T-Fuzz, AFLFast, 
Angorra, Parmesan, Zest, EcoFuzz, GREYONE,… 

• White box: KLEE, angr, SAGE, Mayhem, …  

• Hybrid: Pangolin, QSYM, Driller, …

There are many more …



Evaluating Fuzzing 
an adventure in the scientific method



Assessing Progress
• Since fuzzing is an active area, we can assume the 

technology is getting better, right? 

• To know, claims must be supported by empirical 
evidence 

• I.e., that a new fuzzer is more effective at finding 
vulnerabilities than a baseline on a realistic workload 

• Is the evidence reliable?



Fuzzing Evaluation Recipe  
for Advanced Fuzzer (call it A)

• A compelling baseline fuzzer B to compare against 

• A sample of target programs (benchmark suite) 
• Representative of larger population 

• A performance metric 
• Ideally, the number of bugs found (else a proxy) 

• A meaningful set of configuration parameters 
• Notably, justifable seed file(s), timeout 

• A sufficient number of trials to judge performance 
• Comparison with baseline using a statistical test 

Requires



Assessing Progress
• We looked at 32 published papers from 2012-2018 

and compared their evaluation to our template 
• What target programs, seeds and timeouts did they 

choose and how did they justify them?  
• Against what baseline did they compare? 
• How did they measure (or approximate) performance? 
• How many trials did they perform, and what statistical 

test? 

• We found that most papers did some things right, 
but none were perfect

• Raises questions about the strength of published results



Measuring Effects
• Failure to follow the template may not mean 

reported results are wrong 
• Potential for wrong conclusions 

• We carried out experiments to start to assess this 
potential 

• Goal is to get a sense of whether the evaluation 
problem is real 

• Short answer: There are problems
• So we provide some recommended mitigations



Summary of Results
• Less than half of papers measure multiple runs

• Fewer still consider variance across runs 
• And yet fuzzer performance can vary substantially from run to run 

• Papers often choose small number of target programs, with a small 
common set 

• And yet they target the same population 
• And performance can vary substantially  

• Few papers justify the choice of seeds or timeouts
• Yet seeds strongly influence performance,  
• And trends can change over time 

• Many papers use heuristics to relate crashing inputs to bugs
• Yet these heuristics have not been evaluated 
• We find that they dramatically overcount bugs



Don’t Researchers Know Better?
• Yes, many do. Even so, experts forget or are nudged 

away from best practice by culture and circumstance 
• Especially when best practice is more effort 

• Solution: List of recommendations 
• And identification of open problems 

• Inspiration for effort to provide checklist broadly 
• SIGPLAN Empirical Evaluation Guidelines 
• http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/


Outline
• Preliminaries  

• Papers we looked at 
• Categories we considered 
• Experimental setup 

• Results by category, with recommendations 
• Statistical Soundness 
• Seed selection 
• Timeouts 
• Performance metric 
• Benchmark choice 

• Updates throughout, based on where we are in 2020!



• 32 papers (2012-2018) 
• Started from 10 high-impact 

papers, and chased 
references 

• Plus: Keyword search 
• Disparate goals 

• Improve initial seed 
selection 

• Smarter mutation (e.g., 
based on taint data) 

• Different observations (e.g., 
running time) 

• Faster execution times, 
parallelism 

• Etc.



Experimental Setup
• Advanced Fuzzer: AFLFast (CCS’16), Baseline: AFL 

• Five target programs used by previous fuzzers 
• Three binutils programs: cxxfilt, nm, objump (AFLFast) 
• Two image processing ones: gif2png (VUzzer), FFmpeg 

(fuzzsim) 

• 30 trials (more or less) at 24 hours per run 
• Empty seed, sampled seed, others 
• Mann Whitney U test 

• Experiments on de-duplication effectiveness



Since 2018
• To prepare this talk, I looked at 15 fuzzer papers published 

in top conferences in 2018-2020 
• USENIX Security, IEEE S&P, ISSTA, ICSE, ACSAC 
• Not comprehensive (ran out of time), but hopefully not far off 

• Compared them against the same criteria. Are they doing 
things as we recommended?



Since 2018
Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, Driller, Q 5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H

EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H

FiFUZZ Sec 2020 R(9) R(5-
binutils)

A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage (JS) Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H

Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H

UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, libFuzzer, R 10 “within 5%” G, S-ASAN(1) E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H



Statistical Soundness



Fuzzing is a Random Process
• The mutation of the input is chosen randomly by the 

fuzzer, and the target may make random choices 

• Each fuzzing run is a sample of the random process 
• Question: Did it find a crash or not? 

• Samples can be used to approximate the 
distribution 

• More samples give greater certainty 

• Is A better than B at fuzzing? Need to compare 
distributions to make a statement



Analogy: Biased Dice
• We want to compare the “performance” of two dice 

• Die A is better than die B if it tends to land on higher 
numbers more often (biased!) 

• Suppose rolling A and B yields 6 and 1. Is A better?
• Maybe. But we don’t have enough information. One trial is 

not enough to characterize a random process.



Multiple Trials
• What if I roll A and B five times each and get 

• A: 6, 6, 1, 1, 6 
• B: 4, 4, 4, 4, 4 
• Is A better? 

• Could compare average measures 
• median(A) = 6, median(B) = 4 
• mean(A) = 4, mean(B) = 4 
• The first suggests A is better, but the second does not 
• And there is still uncertainty that these comparisons 

hold up after more trials



Statistical Tests
• A mechanism for quantitatively accepting or rejecting a 

hypothesis about a process 

• In our case, the process is fuzz testing and the 
hypothesis is that fuzz tester A (a “random variable”) is 
better than B at finding bugs in a particular program, 
e.g., that median(A) - median(B) ≥ 0 for that program 

• The confidence of our judgment is captured in the p-
value

• It is the probability that the outcome of the test is wrong 
• Convention: p-value ≤ 0.05 is a sufficient level of 

confidence



• Use the Student T test ?
• Meets the right form for the test
• But assumes that samples (fuzz 

test inputs) drawn from a normal 
distribution. Certainly not true 

• Arcuri & Briand advice: Use the 
Mann Whitney U Test

• No assumption of distribution 
normality

ICSE 2011



Evaluations
• 17/32 papers said nothing 

about multiple trials 
• Assume 1 

• 15/32 papers said multiple 
trials 

• Varying number; one case 
not specified 

• 3/13 papers characterized 
variance across runs 

• 0 papers performed a 
statistical test



Practical Impact?
• Fuzzers run for a long time, conducting potentially millions 

of individual tests over many hours 
• If we consider our biased die: Perhaps no statistical 

comparison is needed (just the mean/median) if we have a 
lot of tests?

• Problem: Fuzzing is a stateful search process 
• Each test is not independent, as in a die roll 

- Rather, it is influenced by the outcome of previous tests 
• The search space is vast; covering it all is difficult 

• Therefore, we should consider each run as a trial, and 
consider many trials

• Experimental results show potentially high per-trial variance



Performance Plot
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p < 10-13 p < 10-10

Statistically Significant

Higher median
clearly better

significant variance
in performance



p = 0.0676p = 0.379

Statistically Insignificant

Max AFL = 550 
Min AFLFast = 150

Higher median
does not meet bar 

for significance



I Want You
to run multiple trials  

and  

use a statistical test to 
compare distributions!



How are things in late 2020? Better!
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage 
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 

libFuzzer, R
10 “within 

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H

• 14/15 had multiple trials 
• Varying number; 5 

typical 

• 7/14 papers performed 
a statistical test 

• Most use M-W U 
- One also used A12 effect 

size 
• 2 didn’t say which test 

• 3/7 said something 
about variance



Seed Selection



Seed Corpus
• Mutation-based fuzzers require an initial seed (or 

seeds) to start the process 

• Conventional wisdom: Valid input, but small
• Valid, to drive the program into its “main” logic 
• Small, to complete test more quickly 

• Some studies on how to choose seeds 
• Applied to black box fuzzer; relevant to gray box? 

• How might seed choices matter?



Evaluations
• 30/32 papers used non-

empty seed 
• 10 say nothing else (N) 
• 9 used valid seed but no 

details (V) 

• 2/32 papers used the 
empty (E) file (eg. AFLFast) 

• Good “default” choice in 
vast configuration space 

• But contrary to practice 

• Question: Practical impact?



Experiments
• Empty seed 

• Sampled from FFmpeg site (http://samples. 
mpeg.org) 

• All less than 1 MB 
• Picked smallest one 

• Made with FFmpeg itself (using videogen and 
audiogen programs) 

• Also sampled and made object files for nm and 
objdump, and text for cxxfilt

http://mpeg.org
http://mpeg.org


empty seed 
(AFLFast vs. AFL) p = 0.379  
(AFLDumb vs. AFL) p < 10-15

FFMpeg: Empty vs. Handmade

1-made 
p = 0.048 
p < 10-11

Empty seed (surprisingly) useful



1-sampled 
(AFLFast vs. AFL) p > 0.05 

(AFLDumb vs. AFL) p < 10-5

FFMpeg: Sampled vs. Handmade

1-made 
p = 0.048 
p < 10-11

Both “valid”, but very different performance

~100 crashes
<5 crashes



Seed Corpus: Recommendations
• Performance with different seeds varies dramatically 

• Not all “valid” seeds are the same

• The empty seed can perform well 
• Contrary to conventional wisdom 

• Evaluations should clearly document seed choices

• Evaluations should consider several seeds, 
including empty seed

• Multiple trials to sample large, random space; likewise, 
want to sample large, disparate space of seeds

• Need more research to understand this better



How are things in late 2020? Same
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage 
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 

libFuzzer, R
10 “within 

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H

• Very little said about 
the particulars of seed 
selection 

• Usually valid seeds 
were used,  

- sometimes mentioned how 
many,  

- sometimes mentioned how 
produced 

• No specific mention of 
the use of an empty 
seed



Timeouts



Evaluations
• 10/32 papers ran 24 hours 

• 7/32 papers ran 5 or 6 hours 

• Others less, or much more 
• Minutes … or months! 

• Question: How much does 
this choice matter?



p < 10-13 p < 10-10

Trends can be Stable

AFLFast better at  
5, 8, 24 hours



3-sampled 
6 hours: p < 10-13         AFLFast is better 
24 hours: p = 0.000105      AFL is better

Trends can Change

Can take time for 
fuzzing to “warm up”



Timeouts: Recommendations
• Longer timeouts are better because they subsume 

shorter ones 
• Using plots like ones we’ve shown earlier, performance can 

be compared at different points in time

• But there is a practical limit to long timeouts 
• Hard to work on substantial program corpus over weeks or 

months 

• 24 hours seems like a good target … maybe? 
• Ecologically relevant 

- But longer would be even better! 
• Subsumes common 5 and 8 hour limits 
• Not great principles for choosing it



How are things in late 2020? Good
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 

Driller, Q
5 M-W G, S-

UBSAN(1
)*

L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage 
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 

libFuzzer, R
10 “within 

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H

• 13/15 papers used 24 
hours or more 

• 2 papers fuzzed a long 
time 

• 72 hours on 88 
processors in parallel 

• 3 months



Assessing 
Performance



Performance Metrics
• Ultimate “ground truth”: Bugs

• Finding lots of different inputs whose root cause is the 
same bug is not that useful (maybe, harmful!) 

• Some benchmarks designed with known bugs 
• Crash has telltale sign 

• For others: Which crash signals which bug? 

• Heuristics: Stack hash and coverage (AFL CMIN)



Evaluations
• 7 used AFL CMIN (“unique 

crashes”) (C) 

• 7 used stack hashes (S) 

• 7 assessed ground truth 
perfectly (G) 

• 8 others did, in part (“case 
study”, G*) 

• For C and S: How effective 
at predicting G?



(Fuzzy) Stack Hashes
• Idea: Identify bug according to the stack at the 

time of the crash (return addresses) 
• Or: Limit attention to the top N frames (where N is 

between 3 and 5 in most papers) 

• Rationale: Faulting location highly indicative of 
source of bug 

• Stack provides useful context (i.e., when faulting 
function given a input, only from certain caller) 

• But some “context” may be superfluous 
- Assume: frames closer to bug more relevant



False Positives and Negatives
void f() { … format(s1); … }
void g() { … format(s2); … }
void format(char *s) {
  //bug: corrupt s
  prepare(s);
}
void prepare(char *s) {
  output(s);
}
void output(char *s) {
  //failure manifests
}

• With N=3, distinct calls to 
format from f and g will be 
conflated, properly 

• But with N=5, calling format 
from f and g are made distinct 

• Overcounting 

• With N=2, a bug in a different 
caller to prepare that 
corrupts its argument will be 
conflated with the format bug 

• Undercounting



AFL CMIN
• A crashing input is considered “unique” if either 

• the coverage profile includes an edge (“tuple”) not seen 
in any of the previous crashes 

• the profile is missing a tuple always present in earlier 
faults 

• AFL calls this CMIN 
• Docs justify it by mentioning the issues with stack hashes 

• CMIN may also suffer from inflated counts (false 
positives) 

• Many superfluously different paths to the same fault-point 
are treated as distinct



Assessing Heuristics: cxxfilt
• Used commit history to find 

patches since fuzzed version
• E.g., commit on left fixes integer 

overflow 

• Applied patches iteratively, and re-
ran against all 57,000+ crashing 
inputs (post-CMIN, all 30 runs) 
• Those that no longer crash are due 

to this patch 
• Broke apart patches that fix multiple 

bugs 

• Re-run must account for non-
determinism 
• Used ASAN/UBSAN: “non crash” 

only if it found no issue



Stack Hashes (N=3)
• 57,040 inputs handled by bugfix 

• 98 inputs never fixed 
• 4 inputs “fixed” but due to some 

source of nondeterminism 

• In general: Far less over 
counting 

• At most 596 hashes for 9 bugs 
• vs. 57,040 inputs for 9 bugs 

• Hashes have false negatives 
• Bug B has 343 hashes that apply 

just to this bug, but 19 that apply 
to others too



cxxfilt: AFL CMIN vs. Bugs
• No trial found more than 8 bugs 

• Out of 9 total 

• 3 bugs account for most 
crashing inputs 
• many bugs have few inputs 
• so counting inputs misleading 

• Number of crashing inputs 
correlates with number of bugs, 
but only loosely 

• Mann Whitney p-value is .066 for 
AFLFast bugs > AFL bugs 
• vs. 10-10 for “unique” crashes



Metrics Summary
• This is just one program and set of fuzzing results, 

but it shows the potential for heuristics to 
• Massively overcount bugs (false positives) 
• Miss bugs (false negatives) 
• The good news is that the situation seems tilted toward 

the former 

• As such, it seems prudent to attempt to measure 
ground truth directly 

• Use benchmarks with known bugs 
• Might still use other programs, to avoid overfitting



How are things in late 2020? Better
Paper Where When Benchmark

s
Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage 
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 

libFuzzer, R
10 “within 

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H

• 14/15 papers’ results 
based on ground truth 

• At least for part of their 
benchmarks 

• 10/15 also used “unique 
crashes” 

• Varying levels of extra 
effort to avoid over/
undercounts 

- ASAN or UBSAN 
instrumentation 

• 11/15 also measured 
code coverage



Target Programs



Evaluations
• 30/32 used real programs 

• Median of 7, as many as 100 
• 2/32 use Google Fuzz Suite 
• Fair/sufficient sample? 

• 9/32 purposely-vulnerable 
programs (or injected bugs) 

• 5 use LAVA-M 
• 4 use CGC 
• Ecological validity?



p = 0.379

Binutils vs. Image proc.

p < 10-13

From AFLFast paper From VUzzer paper



Google Fuzz Test Suite
• https://github.com/google/fuzzer-test-suite 

• 24 programs and libraries with known bugs
• OpenSSL, PCRE, SQLite, libpng, libxml2, libarchive, … 

• Comes with harness to connect to AFL and libfuzzer 
• And confirm when a bug is discovered 

• This is a sort of regression suite, so its generality is 
not entirely clear 

• Also, Google OSS-Fuzz project 
• https://github.com/google/oss-fuzz

https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz
https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz


Cyber Grand Challenge
• CGC is a suite of 296 programs constructed for 

DARPA’s Cyber Grand Challenge 
• Intended to be ecologically valid, but also intended 

to be challenging (gamification) 
• Validity not confirmed (e.g., mean size is 1800 LOC)
• And subset in many papers 

• Good feature: Known ground truth (telltale sign 
when bug is triggered) 

• https://github.com/trailofbits/cb-multios

https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios


LAVA-M
• LAVA is a bug injection methodology that adds “magic 

number checks” to inputs that otherwise do not affect 
control flow (much) 

• LAVA-M is the result of using it to inject bugs in four open-
source programs (base64, md5sum, uniq, and who) 

• 2000+ bugs injected in who (!) 

• “A significant chunk of future work for LAVA involves 
making the generated corpora look more like the bugs 
that are found in real programs.” 

• http://moyix.blogspot.com/2016/10/the-lava-synthetic-
bug-corpora.html

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html


How are things in late 2020? Better
Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout

DIE (JS) S&P 2020 R(3) Superion, CA 5 C G*, C* E (path) R 24 H
Ijon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G V 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 

Driller, Q
5 M-W G, S-

UBSAN(1)*
L 24x3 H

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, … 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 5 ? G 5 H
FiFUZZ Sec 2020 R(9) R(5-

binutils)
A, AF, AS, FairFuzz 3 ? G, O E ? 24 H

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 
Honggfuzz, Q

5 G, C* E (path) R (10) 60 H

Montage 
(JS)

Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G, V 72x88 H

ParmeSan Sec 2020 G Angorra 30 M-W G E V 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 

months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 

libFuzzer, R
10 “within 

5%”
G, S-
ASAN(1)

E (path) V 24*4 H

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal 
statistical 
variations”

G(*), S L R(4) 12 H

• Standard benchmarks 
in greater use 

• 7/15 use LAVA-M 
• 3/15 use GoogleTS 
• 1/15 use CGC 
• All provide ground truth 

• Real-world programs 
often diverse, used 
before 

• Some impressive 
choices: 19 programs in 
one case!



A Fuzzing Benchmark?
• A substantial (large) sample of relevant programs (look 

at the breadth of existing fuzzing papers) 
• Some justification for ecological validity 

• Should know ground truth 

• Fuzzers should not overfit to the benchmark 
• Perhaps run a sample from a larger population 
• May want to include non-benchmark programs too, despite 

not necessarily having ground truth 
• Regular competition, like SAT competition? 

• Google Fuzz, CGC, LAVA-M, current papers may be 
good starting points



New! FuzzBench
• https://github.com/google/fuzzbench

SIGPLAN Guidelines

Our paper

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench


New! FuzzBench
• https://github.com/google/fuzzbench

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench


New! FuzzBench
• https://github.com/google/fuzzbench 

• 21 programs and libraries with known bugs
• OpenSSL, SQLite3, WolfSSL, Zlib, Libpng, LibPCAP, .. 
• Can use any OSS-Fuzz project as a benchmark 

• Connects to many fuzzers  

• Measures (via 20 trials, 24 hours) 
• Median total edge coverage, and over time, per 

program. Graphs median. 
• Missing: measurement based on ground-truth bugs

- Stated plans to add it 

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench




Summary: Do’s and Don’ts
• Do assess a random process using multiple trials and 

a statistical test
• Don’t run just one trial 
• Don’t compute just the mean/median 

• Don’t use heuristics as only performance measure 
• Some results should be based on ground truth 

• Do clarify choice of seed
• Evaluate several, including the empty seed 

• Do use longer timeout and measure performance over 
time 

• Use a good benchmark suite (to be developed!)



General advice: SIGPLAN guidelines!

http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/

