) v. \ : '-","‘J,""_- ”t.".- 2
T A3 Vel A '-‘-',.’1';\3 Q‘r

Fuzzing
and how to evaluate it

AN MARYLAND Michael Hicks
The University of Marylanad
}Q HotSOS 2020

oint work with George Klees, Andrew Ruef, Benji Cooper, Shiyi Wel

Presented at
ACM CCS
Conference,
October 2018

Won NSA

Best
Scientific
Cybersecurity
Paper Award,
Sep. 2019

Session 10D: VulnDet 2 + Side Channels 2

CCS'18, October 15-19, 2018, Toronto, ON, Canada

Evaluating Fuzz Testing

George Klees, Andrew Ruef, Shiyi Wei Michael Hicks
Benji Cooper University of Texas at Dallas University of Maryland
University of Maryland
ABSTRACT Why do we think fuzzers work? While inspiration for new ideas

Fuzz testing has enjoyed great success at discovering security criti-
cal bugs in real software. Recently, researchers have devoted sig-
nificant effort to devising new fuzzing techniques, strategies, and
algorithms. Such new ideas are primarily evaluated experimentally
so an important question is: What experimental setup is needed

to produce trustworthy results? We surveyed the recent research
literature and assessed the experimental evaluations carried out
by 32 fuzzing papers. We found problems in every evaluation we
considered. We then performed our own extensive experimental
evaluation using an existing fuzzer. Our results showed that the
general problems we found in existing experimental evaluations
can indeed translate to actual wrong or misleading assessments. We
conclude with some guidelines that we hope will help improve ex-
perimental evaluations of fuzz testing algorithms, making reported
results more robust.

CCS CONCEPTS

» Security and privacy — Software and application security;

KEYWORDS

fuzzing, evaluation, security

ACM Reference Format:

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks.
2018. Evaluating Fuzz Testing. In 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS '18), October 15-19, 2018, Toronto,

ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

242794 ID49291%4

may be drawn from mathematical analysis, fuzzers are primarily
evaluated experimentally. When a researcher develops a new fuzzer
algorithm (call it A), they must empirically demonstrate that it
provides an advantage over the status quo. To do this, they must
choose:

e a compelling baseline fuzzer B to compare against;

e a sample of target programs—the benchmark suite;

e a performance metric to measure when A and B are run on
the benchmark suite; ideally, this is the number of (possibly
exploitable) bugs identified by crashing inputs;

e a meaningful set of configuration parameters, e.g., the seed
file (or files) to start fuzzing with, and the timeout (i.e., the
duration) of a fuzzing run.

An evaluation should also account for the fundamentally random
nature of fuzzing: Each fuzzing run on a target program may pro-
duce different results than the last due to the use of randomness.
As such, an evaluation should measure sufficiently many trials to
sample the overall distribution that represents the fuzzer's perfor-

mance, using a statistical test [38] to determine that A's measured
improvement over B is real, rather than due to chance.

Failure to perform one of these steps, or failing to follow rec-

ommended practice when carrying it out, could lead to misleading
or incorrect conclusions. Such conclusions waste time for practi-

tioners, who might profit more from using alternative methods

or configurations. They also waste the time of researchers, who
make overly <trone accumntione baced on an arbitrarv hiinine of

* [he paper looks critically at the how potential advances
N fuzz testing are evaluated scientifically

* [his talk will cover the content In that paper, which Is
still relevant today

How should we scientifically evaluate potential
advances in randomized testing (fuzzing) technology?

o | will also brietly look at the impact of the paper since it
was published — have things changed?

What is fuzzing”

* A Kind of testing based on random input generation

» Goal: make sure certain bad things don’t happen,
no matter what

Crashes, thrown exceptions, non-termination

» All of these things can be the foundation of security
vulnerabillities

- Complements functional testing

 Jest features (and lack of misfeatures) directly
» Normal tests can be starting points for fuzz tests

Flle-based fuzzing

Mutate or generate inputs (e.g., according to a grammar
Run the target program with them

See what happens

Repeat

XXX
y36
XXz

mmm

XXX
XXX
XXX

American Fuzzy Lop (AFL)

 AFL Is a mutation-based, gray-box tuzzer - de-facto standard

 Instrument target to gather tuple of <ID of current code location,

ID last code location>
On Linux, the optional QEMU mode allows black-box binaries to be fuzzed

» Retain test input to create a new one if coverage profile updated

New tuple seen, or existing one a substantially increased number of times
Mutations include bit flips, arithmetic, other standard stuff

¢ afl-gcc -c .. -0 target
¢ afl-fuzz -1 inputs -0 outputs target
afl-fuzz 0.23b (Sep 28 2014 19:39:32) by <lcamtuf@google.com>

[*] Verifying test case 'inputs/sample.txt'...
[+] Done: 0 bits set, 32768 remaining in the bitmap. ..

Queue cycle: 1n time : 0 days, 0 hrs, 0 min, 0.53 sec ..

http://Icamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

american fuzzy lop 0.47b (readpng)

process timing overall results
0 days, O hrs, 4 min, 43 sec
0 days, 0 hrs, 0 min, 26 sec 195
none seen yet 0
0 days, O hrs, 1 min, 51 sec 1
cycle progress map coverage
38 (19.49%) 1217 (7.43%)
0 (0.00%) 2.55 bits/tuple
stage progress findings 1n depth
interest 32/8 128 (65.64%)
0/9990 (0.00%) 85 (43.59%)
654k 0 (0O unique)
2306 /sec 1 (1 unique)
fuzzing strategy yields path geometry
88/14.4k, 6/14.4k, 6/14.4K 3
0/1804, 0/1786, 1/1750 178
31/126k, 3/45.6k, 1/17.8k 114
1/15.8k, 4/65.8k, 6/78.2k 0
34/254k, 0/0 0
2876 B/931 (61.45% gain) 0

Active Area of Research

* Black box: CERT Basic Fuzzing Framework (BFF),
/zut, ...

* Gray box: VUzzer, Fairfuzz, T-Fuzz, AFLFast,
Angorra, Parmesan, Zest, EcoFuzz, GREYONE,...

* White box: KLEE, angr, SAGE, Mayhem, ...

* Hybrid: Pangolin, QSYM, Driller, ...

There are many more ...

Evaluating Fuzzing
an adventure in the scientific method

ASSsessIing Progress

e Since fuzzing is an active area, we can assume the
technology is getting better, right?

* Jo know, claims must be supported by empirical

evidence

|.e., that a new fuzzer is more effective at finding
vulnerabllities than a baseline on a realistic workload

« |s the evidence reliable?

~Uzzing evaluation Recipe
Requires for Advanced Fuzzer (call it A)

A compelling baseline fuzzer B to compare against

* A sample of target programs (benchmark suite)
» Representative of larger population

* A performance metric
» |deally, the number of bugs found (else a proxy)

* A meaningful set of configuration parameters
- Notably, justifable seed file(s), timeout

» A sufficient number of trials to judge performance
- Comparison with baseline using a statistical test

ASsessing Progress

* We looked at 32 published papers from 2012-2018
and compared their evaluation to our template

» What target programs, seeds and timeouts did they
choose and how did they justify them?

- Against what baseline did they compare”
- How did they measure (or approximate) performance?

- How many trials did they perform, and what statistical
test?

* We found that most papers did some things right,
but none were perfect
» Raises questions about the strength of published results

Measuring Effects

» Failure to follow the template may not mean
reported results are wrong
» Potential for wrong conclusions

 We carried out experiments to start to assess this
potential

» (Goal is to get a sense of whether the evaluation
poroblem is real

o Short answer: There are problems
* S0 we provide some recommended mitigations

Summary of Results

Less than half of papers measure multiple runs
» Fewer still consider variance across runs
» And vyet tuzzer performance can vary substantially from run to run

* Papers often choose small number of target programs, with a small
common set
» And yet they target the same population
- And performance can vary substantially

Few papers justify the choice of seeds or timeouts
» Yet seeds strongly influence performance,
» And trends can change over time

 Many papers use heuristics to relate crashing inputs to bugs
* Yet these heuristics have not been evaluated
- We find that they dramatically overcount bugs

Tapar (has D

Don’'t Researchers Know Better”/

 Yes, many do. Even so, experts forget or are nudged
away from best practice by culture and circumstance
» Especially when best practice is more effort

e Solution: List of recommendations
» And identification of open problems

CHECKLIST

HOW TO GET THINGS RIGHT

e |nspiration for effort to provide checklist broadly
+ SIGPLAN Empirical Evaluation Guidelines
» http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/

Outline

* Preliminaries
» Papers we looked at
+ (Categories we considered
» Experimental setup

e Results by category, with recommendations
- Statistical Soundness
» Seed selection
« [Imeouts
» Pertormance metric
« Benchmark choice

* Updates throughout, based on where we are in 2020/

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][S8] R(29) G ? N i
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A B, Z S M 1H
MutaGen[29] R(8) R,Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo[5] R(?) A, O 20 S L V/E | 8H, 24H
VUzzer[44] C(63), L, R(10) A G, S 0 N 6H, 24H
SlowFuzz[41] R(10) O 100 E N
Steelix[33] C(17), L, R(5) AV, 0 C,G L,E,M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) 0 5 C, G* V | 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) AL O 80 C S, G* Vv >7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) O 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) A, L Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV,0 5 G,C L, E N 5H
T-Fuzz[39] C(2%),L,R(4) | A,O 3 C, G* N 24H
MEDS|[24] S(2), R(12) O 10 C N 6H

- 32 papers (2012-2018)

- Started from 10 high-impact
papers, and chasead
references

- Plus: Keyword search

- Disparate goals

- Improve initial seed
selection

- Smarter mutation (e.g.,
based on taint data)

- Different observations (e.q.,
running time)

+ Faster execution times,
parallelism

- Etc.

Experimental Setup

Advanced Fuzzer: AFLFast (CCS'16), Baseline: AFL

Five target programs used by previous fuzzers
 Three binutils programs: exxfilt, nm, objump (AFLFast)
» [wo Image processing ones: gif2png (VUzzer), FFmpeg
(fuzzsim)

30 trials (more or less) at 24 hours per run

» Empty seed, sampled seed, others
» Mann Whitney U test

Experiments on de-duplication effectiveness

Since 2018

o Jo prepare this talk, | looked at 15 fuzzer papers published
INn top conferences in 2018-2020

« USENIX Security, IEEE S&P, ISSTA, ICSE, ACSAC
» Not comprehensive (ran out of time), but hopetully not far off

 Compared them against the same criteria. Are they doing
things as we recommended”

Since 2018

Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout
DIE (JS) S&P 2020 R(3) Superion, CA 5C G*, C* E (path) R 24 H
ljon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite S&P 2020 L AFL in various modes 5 M-W G Vv 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, Driller, Q 5 M-W G, S- L 24x3 H
UBSAN(1)*
EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, ... 5 Yes G* C E (path) 7 24 H
EcoFuzz 2 Sec 2020 L Angora, VUzzer 57 G 5H
FiIFUZZ Sec 2020 R(9) R(5- A, AF, AS, FairFuzz 37 G, O E ? 24 H
binutils)
GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E(path) R((10) 60H
Honggfuzz, Q
Montage (JS) Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, GV 72x88H
ParmeSan Sec 2020 G Angorra 30 M-W G E Vv 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3 months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, libFuzzer, R 10 “within 5%” G, S-ASAN(1) E (path) V 244 H
TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(), S L R(4) 12 H
statistical
variations”

Statistical Soundness

~UzzINg IS a Random Process

The mutation of the input is chosen randomly by the
fuzzer, and the target may make random choices

Each fuzzing run Is a sample of the random process
» Question: Did it find a crash or not?

Samples can be used to approximate the
distribution
» More samples give greater certainty

s A better than B at fuzzing” Need to compare
distributions to make a statement

Analogy: Blased Dice

 We want to compare the “performance” of two dice
» Die A is better than die B if it tends to land on higher

numbers m

* SUPPOSE o

ore often (biased!)

iIng A and B yields 6 an

- Maybe. Bu

d 1. 1s A better?

-we don't have enough In’

ormation. One trial is

not enougr

to characterize a randomr

Drocess.

Multiple [rials

 What if | roll A and B five times each and get
- A:0,0,1,1,0
. B:4,4,4,4,4
- [s A better?

 Could compare average measures
* median(A) = 6, median(B) = 4
- mean(A) = 4, mean(B) = 4
» The first suggests A Is better, but the second does not

- And there is still uncertainty that these comparisons
hold up after more trials

Statistical Tests

* A mechanism for quantitatively accepting or rejecting a
hypothesis about a process

* |In our case, the process is fuzz testing and the
hypothesis is that fuzz tester A (a “random variable”) is
better than B at finding bugs in a particular program,
e.qg., that median(A) - median(B) = 0 for that program

* The confidence of our judgment is captured in the p-
value
* |t is the probability that the outcome of the test is wrong

» Convention: p-value = 0.05 is a sufficient level of
confidence

A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering

Andrea Arcuri
Simula Research Laboratory
P.O. Box 134, 1325 Lysaker, Norway

arcuri@simula.no

ABSTRACT

Randomized algorithms have been used to successfully address many
different types of software engineering problems. This type of al-
gorithms employ a degree of randomness as part of their logic.
Randomized algorithms are useful for difficult problems where a
precise solution cannot be derived in a deterministic way within
reasonable time. However, randomized algorithms produce differ-
ent results on every run when applied to the same problem instance.
It is hence important to assess the effectiveness of randomized algo-
rithms by collecting data from a large enough number of runs. The
use of rigorous statistical tests is then essential to provide support
to the conclusions derived by analyzing such data. In this paper, we
provide a systematic review of the use of randomized algorithms in
selected software engineering venues in 2009. Its goal is not to per-
form a complete survey but to get a representative snapshot of cur-
rent practice in software engineering research. We show that ran-
domized algorithms are used in a significant percentage of papers
but that, in most cases, randomness is not properly accounted for.
This casts doubts on the validity of most empirical results assess-
ing randomized algorithms. There are numerous statistical tests,
based on different assumptions, and it is not always clear when and
how to use these tests. We hence provide practical guidelines to
support empirical research on randomized algorithms in software
engineering.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General;
[.2.8 TArtificial Intelligencel: Problem Solving. Control Methods.

Lionel Briand
Simula Research Laboratory and
University of Oslo
P.O. Box 134, 1325 Lysaker, Norway

briand@simula.no

1. INTRODUCTION

Many problems in software engineering can be alleviated through
automated support. For example, automated techniques exist to
generate test cases that satisfy some desired coverage criteria on
the system under test, such as for example branch [26] and path
coverage [22]. Because often these problems are undecidable, de-
terministic algorithms that are able to provide optimal solutions in
reasonable time do not exist. The use of randomized algorithms
[44] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in soft-
ware engineering is perhaps random testing [13, 6]. Techniques
that use random testing are of course randomized, as for example
DART [22] (which combines random testing with symbolic execu-
tion). Furthermore, there is a large body of work on the application
of search algorithms in software engineering [25], as for example
Genetic Algorithms. Since practically all search algorithms are ran-
domized and numerous software engineering problems can be ad-
dressed with search algorithms, randomized algorithms therefore
play an increasingly important role. Applications of search algo-
rithms include software testing [41], requirement engineering [8],
project planning and cost estimation [2], bug fixing [7], automated
maintenance [43], service-oriented software engineering [9], com-
piler optimisation [11] and quality assessment [32].

A randomized algorithm may be strongly affected by chance. It
may find an optimal solution in a very short time or may never
converge towards an acceptable solution. Running a randomized
algorithm twice on the same instance of a software engineering
problem usually produces different results. Hence, researchers in

(‘l‘\#f“!(\ra nnn:nnn'-:nn fl\(\f Aﬂ‘lﬂ]n"\ “f\‘la] fnnl'\n: IIIII knnnr‘ MAan roanm

o Use the Student T test 7
+ Meets the right form for the test

fest
distr

« But ass

NP

bu

-/

X

N fromr

mes that samples (fuzz
ts) draw
on. Certainly r

a normal
Ot true

e Arcurl & Briand advice: Use the
Mann Whitney U Test

 No assumption of distribution
normality

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM[8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R, Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo[5] R(?) A, O 20 S L V/E | 8H, 24H
VUzzer|[44] C(63), L, R(10) A G, S0 N 6H, 24H
SlowFuzz[41] R(10) O 100 E N
Steelix[33] C(17), L, R(5) AV, 0 C,G L,E.M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) 0 5 C,G* V | 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) AL O 80 C S, G* Vv >7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) O 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) A, L Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV, 0 5 G, C L, E N 5H
T-Fuzz[39] C(2%),L,R4) | A,O 3 C, G* N 24H
MEDS|[24] S(2), R(12) O 10 C N 6H

Evaluations

17/32 papers said nothing
about multiple trials
* Assume

15/32 papers said multiple
trials

* Varying number; one case
not specified

3/13 papers characterized
variance across runs

O papers performed a
statistical test

Practical Impact”?

Fuzzers run for a long time, conducting potentially millions
of individual tests over many hours
It we consider our biased die: Perhaps no statistical

comparison is needed (just the mean/median) if we have a

lot of tests?

Rather, it is influenced by the outcome of previous tests
The search space is vast; covering it all is di

°roblem: Fuzzing is a stateful search process
- Each test is not independent, as in a die roll

Ticult

e Therefore, we should consider each run as a trial, and

consider many trials

-Xperimental results show potentially high per-trial variance

Crashes found

Performance Plot

1800 | | | nm (elmpty §eed)

1600 . - mMax

| | |

o - — 9%
1200 | median 95%,

|

1000 +

| mMin

800 |

600 |

400

200

O‘ L - +~ - = - — - o - = - | — |= -
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

Crashes found

1800

1600

1400

1200

1000

800

600

400

200

0
0

Performance Plot

nm (empty seed)

| | | | | |

max

' d 95%

megian gso,

| mMin

| 95%
median 959,

|

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

Statistically Significant

1800

nm (empty seed)

— afl
1600 — aflfast

1400 |

1200 -

1000 |

800 |-

Crashes found

600 |-

400

200

significant variance
N performance

0 T = + — n— - - = - |= - = -
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

0 < 10-13

Crashes found

1800

1600

1400 |

1200 |

1000 |

800 |-

600 |-

400

cxxfilt (empty seed)

— affl
— aflfast

200 -y’

10000 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

0 < 10-10

Higher median
clearly better

Statistically Insignificant

600

500

400

300

Crashes found

200

100

Max AFL = 5

FFmpeg (empty seed)

afl
aflfast

50

)

Min AFLFast = 150

0‘ = ke - 1 1 1 1 L
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

o =0.379

Crashes found

80

70

60

50

40

30

20

10

0
0

gif2png (empty seed)

|

afl
aflfast S

I
|
I
|
I
|
|
|

A

10000 20000 30000 40000 50000 60000 70

Time (seconds)

b = 0.0676

000 80000 90000

Higher median
does not meet bar
for significance

| \Want You

to run multiple trials
and

use a statistical test to
compare daistributions!

How are things In late 20207 Better!

Paper Where When Benchmark Baseline Trials Variance Crash Coverage Seed Timeout
S

DIE (JS) S&P 2020 R(3) Superion, CA 5C G*, C* E (path) R 24 H

ljon S&P 2020 C*, R* A 3 G E(path) M 24 H

Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H

Retrowrite |S&P 2020 L AFL in various modes 5 M-W G Vv 24 H

SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 5 M-W G, S- L 24x3 H
Driller, Q UBSAN(1)*

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, ... 5 Yes G*, C E (path) ? 24 H

EcoFuzz 2 |Sec 2020 L Angora, VUzzer 572 G 5H

FiFUZZ Sec 2020 R(9) R(5- A, AF, AS, FairFuzz 3|7 G, O E ? 24 H

binutils)

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E(path) R(10) 60H
Honggfuzz, Q

Montage Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G,V 72x88 H

(JS)

ParmeSan |Sec 2020 G Angorra 30 M-W G E Vv 48 H

Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)

Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H

UnTracer |S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H

EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 10 “within G, S- E (path) V 24*4 H
libFuzzer, R 5%” ASAN(1)

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(*), S L R(4) 12 H

statistical

variations”

* 14/15 had multiple trials
- Varying number; 5
typical

o //14 papers performed
a statistical test
» Most use M-W U

- One also used A12 effect
slze

+ 2 didn't say which test

e 3/7 said something
about variance

Seed Selection

Seed Corpus

o Mutation-based fuzzers require an initial seed (or
seeds) to start the process

- Conventional wisdom: Valid input, but smalli
- Valid, to drive the program into its "main” logic
- Small, to complete test more quickly

e Some studies on how to choose seeds
» Applied to black box fuzzer; relevant to gray box?

 How might seed choices matter?

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM[8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R,Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo[5] R(?) A, O 20 S L V/E | 8H, 24H
VUzzer[44] C(63), L, R(10) A G, S 0 N 6H, 24H
SlowFuzz[41] R(10) O 100 E N
Steelix[33] C(17), L, R(5) AV, 0 C,G L,E,M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) 0 5 C, G* V | 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) AL O 80 C S, G* V >7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) 0 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) A, L Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV,0 5 G,C L, E N 5H
T-Fuzz[39] C(2%),L,R(4) | A,O 3 C, G* N 24H
MEDS|[24] S(2), R(12) O 10 C N 6H

Evaluations

e 30/32 papers used non-
empty seed
» 10 say nothing else (N)

« 9 used valid seed but no
details (V)

o 2/32 papers used the
empty (E) file (eg. AFLFast)
» (Good “default” choice in
vast configuration space
» But contrary to practice

e Question: Practical impact?

EXperiments

 Empty seed

« Sampled from FFmpeg site (http://samples.
mpeqg.org)
» All less than 1 MB
» Picked smallest one

 Made with FFmpeqg itself (using videogen and
audiogen programs)

* Also sampled and made object tiles for nm and
objdump, and text for cxxfilt

http://mpeg.org
http://mpeg.org

-F-Mpeg: Empty vs. Handmade

Empty seed (surprisingly) useful

450

400 |

350

300

Crashes found

150
100

50

(AFLFast vs. AFL) p = 0.379
(AFLDumb vs. AFL) p < 10-15

0
0

FFmpeg (empty seed)

250

200 |

— afl
— aflfast
— afldumb

-
-

16600 20000 30000 40000 50000 60000 70000 80000 90000

Time (seconds)

empty seed

Crashes found

5000

4000 |

3000 f

2000

1000

FFmpeg (1 random MP4)

0
0

— afl
— aflfast
— afldumb |

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

1-made
0 = 0.048
0 < 10-11

Crashes found

20

15}

10 |

FFMpeg: Sampled vs. Handmade

Both “valid”, but very different performance

FFmpeg (1 sampled video)

— afl
— aflfast
— afldumb

)

|

Time (seconds)

1-sampled

O | | | |]]]]
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

(AFLFast vs. AFL) p > 0.05
(AFLDumb vs. AFL) p < 10

©
c
O
Y—
Q
o
(7))

(C
—
O

5000

4000 +
3000
2000

shes

1000

O A I I 1]]]]
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

FFmpeg (1 random MP4)

— afl
— aflfast

— afldumb |

~100 cr

Time (secon ds)

1-made

0 = 0.0438
o < 10-11

ashes

Seed Corpus: Recommendations

Performance with different seeds varies dramatically
Not all “valid” seeds are the same

The empty seed can perform well
 (Contrary to conventional wisdom

Evaluations should clearly document seed choices

Evaluations should consider several seeds.
including empty seed

« Multl
[1O sam

wall

ple tria

s to sample large, random space; likewise,
ple large, disparate space of seeds

« Need more research to understand this better

How are things in late 20207 Same

Paper Where When Benchmark Baseline Trials Variance Crash Coverage Seed Timeout
S

DIE (JS) S&P 2020 R(3) Superion, CA 5C G*, C* E(path) R 24 H

ljon S&P 2020 C*, R* A 3 G E (path) M 24 H

Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H

Retrowrite |S&P 2020 L AFL in various modes 5 M-W G Vv 24 H

SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 5 M-W G, S- L 24x3 H
Driller, Q UBSAN(1)*

EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, ... 5 Yes G*, C E (path) ? 24 H

EcoFuzz 2 |Sec 2020 L Angora, VUzzer 572 G 5H

FiFUZZ Sec 2020 R(9) R(5- A, AF, AS, FairFuzz 37 G, O E ? 24 H

binutils)

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E(path) R (10) 60H
Honggfuzz, Q

Montage Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G,V 72x88 H

(JS)

ParmeSan |Sec 2020 G Angorra 30 M-W G E Vv 48 H

Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3

months)

Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H

UnTracer |S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H

EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 10 “within G, S- E (path) V 24*4 H
libFuzzer, R 5%” ASAN(1)

TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(*), S L R(4) 12 H

statistical

variations”

e Very little said about
the particulars of seed
selection

+ Usually valid seeds

Were used,

- sometimes mentioned how
many,

- sometimes mentioned how
produced

» No specific mention of
the use of an empty
seed

1T Iimeouts

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM[8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R, Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G* E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo[5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer[44] C(63), L, R(10) A G, S, O N 6H, 24H
SlowFuzz[41] R(10) O 100 - N
Steelix[33] C(17), L, R(5) AV, 0 C, G L,E,M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) O 5 C, G” Vv 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) A LO 80 C S, G* Vv >7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) O 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) AL Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV, 0 5 G, C L, E N 5H
T-Fuzz[39] C(296), L, R(4) A, O 3 C, G* N 24H
MEDS[24] S(2), R(12) O 10 C N 6H

Evaluations

10/32 papers ran 24 hours

//32 papers ran 5 or 6 hours

Others less, or much more
 Minutes ... or months!

Question: How much does
this choice matter?

Crashes found

Trends can be Stable

nm (empty seed)

cxxfilt (empty seed
1800 T T T T T T 1800 T T T l(p yl)' ! |
— afl) — afl .- =
1600 | — aflfast T : 1600 | — aflfast L :
1400 .o T T : 1400 - |
1200 - 1200 -]
©
c
1000 - 3 1000}]
»
()
800 - - % 800} .
o
@)
600 | . 600 |- |
400 . 400 | .
200 + - 200 |k |
0 = I - - - — - — - = - = - = = j= = 0 | 1 1 1 1 | 1 1
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds) Time (seconds)

0 < 10-13 0 < 10-10

AFLFast better at
5 8 24 hours

Trends can Change

16 nm (3 sampled ELFs)

— afl
14 1| — aflfast

12

10

Can take time f

Crashes found

fuzzing to "warmnr

I
|
I |
I
_'Iﬁl
| I | '
- I_ AI_Il.‘. J
| | |
2_ —_— o ll
I !
AL
| '|
0

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

3-sampled
6 hours: p < 10-13 AFLFast is better
24 hours: p = 0.000105 AFL Is better

or
up

lTimeouts: Recommendations

* Longer timeouts are better because they subsume
shorter ones

+ Using plots like ones we've shown earlier, performance can
be compared at different points in time

* But there is a practical limit to long timeouts

ard to work on substantial program corpus over weeks or
months

-+ 24 hours seems like a good target ... maybe?

—cologically relevant
- But longer would be even better!

« Subsumes common 5 and 8 hour limits
» Not great principles for choosing it

How are things in late 20207 Gooo

Paper Where When Benchmark Baseline Trials Variance Crash Coverage Seed Timeout
S
DIE (JS) S&P 2020 R(3) Superion, CA 5C G*, C* E (path) R 24 H
ljon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite |S&P 2020 L AFL in various modes 5 M-W G Vv 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 5 M-W G, S- L 24x3 H
Driller, Q UBSAN(1
)*
EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, ... 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 |Sec 2020 L Angora, VUzzer 572 G 5H
FiFUZZ Sec 2020 R(9) R(5- A, AF, AS, FairFuzz 37 G, O E ? 24 H
binutils)
GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E (path) R(10) 60H
Honggfuzz, Q
Montage Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G,V 72x88 H
(JS)
ParmeSan |Sec 2020 G Angorra 30 M-W G E Vv 48 H
Superion |ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3
months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer |S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 10 “within G, S- E (path) Vv 24*4 H
libFuzzer, R 5%” ASAN(1)
TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(*), S L R(4) 12 H
statistical

variations”

e 13/15 papers used 24
hours or more

o 2 papers fuzzed a long
time
* /2 hours on 88
processors in parallel
» 3 months

ASSEeSSINg
Pertormance

Performance Metrics

- Ultimate “ground truth”: Bugs

» Finding lots of ditferent inp
same bug is not that usefu

Uts whose root cause Is the

(maybe, harmtul!)

 Some benchmarks designed with known bugs

+ Crash has telltale sign

* For others: Which crash signals which bug?

» Heuristics: Stack hash and coverage (AFL CMIN)

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G” ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R, Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G” E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo(5] R(?) A O 20 S L V/E | 8H, 24H
VUzzer|[44] C(63), L, R(10) A G, S0 N 6H, 24H
SlowFuzz[41] R(10) O 100 - N
Steelix[33] C(17), L, R(5) AV, 0 C,G L,E.M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) O 5 GG V | 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) AL O 80 C SIGH Vv >7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G 0 G 24H
[59] S(?) O 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) AL Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV,0 5 G, C L, E N 5H
T-Fuzz[39] C(29%),L,R(4) | A,O 3 C, G* N 24H
MEDS[24] S(2), R(12) 0 10 C N 6H

Evaluations

/7 used AFL CMIN (“unigue
crashes”) (C)

/ used stack hashes (S)

/ assessed ground truth
perfectly (G)

+ 8 others did, in part (“case
study”, G¥)

For C and S: How effective
at predicting G7

(Fuzzy) Stack Hashes

* |dea: ldentify bug according to the stack at the

time of the crash (return addresses)

+ Or: Limit attention to the top N frames (where N is

between 3 and 5 in most papers)

* Rationale: Faulting location highly indicative of

source of bug

» Stack provides useful context (i.e., when faulting

function given a input, only from certair

» But some “context” may be supertluous
- Assume: frames closer to bug more relevant

caller)

-alse Positives and Negatives

 With N=3, distinct calls to
format from £ and g will be
conflated, properly

void f£() { .. format(sl); ..
vold g() { .. format(s2); ..
volid format(char *s) {

//bug: corrupt s e But with N=5, calling format
prepare(s); from £ and g are made distinct
+ Overcounting

'

vold prepare(char *s) {
output(s);

 With N=2, a bug In a different
caller to prepare that

} corrupts its argument will be

void output(char *s) { conflated with the format bug
//failure manifests . Undercounting
}

AFL CMIN

e A crashing input is considered “unique” If either

+ the coverage profile includes an edge (“tuple’) not seen
IN any of the previous crashes

the profile is missing a tuple always present in earlier
faults

o AFL calls this CMIN
» Docs justity it by mentioning the issues with stack hashes

 CMIN may also suffer from inflated counts (false
DOSItives)
- Many superfluously different paths to the same fault-point
are treated as distinct

e
N
W

N
N
N

N
N
O

AN
)\
(0))

N
N
\l

N
N
(00

\I%I-D-
— N
O O

~
N
S

\l
N
—h

~
N
\)

~
N
w

~l
N
o

~
N
)]

— 3%

6

(@)
o

—
(@)
(@)

1

—
(@)
(@)
(\)

—A
(@)
w

6

—
@)
(0))
AN

—
@)
&)

6

—
@)
(@)
()]

— S

681

—A
(@)
0
(\}

—
(o)
0 0)
w

—
@)
Qo
N

—
(®))]
00)
&)

—
(@)
00
(0))

1687

Assessing Heuristics: cxxfilt

e Used commit history to find
patches since fuzzed version

+ E.g., commit on left fixes integer
overtlow

Line 419 static struct demangle_component *d_sour

static long d_number (struct d_info *);
static struct demangle_component *d_identifier (struct d_info *, int);

static struct demangle_component *d_operator_name (struct d_info

*);

Line 715 d_dump (struct demangle_component *dc, i
case DEMANGLE_COMPONENT_FIXED_TYPE:

printf ("fixed-point type, accum? %d, sat? %d\n",
dc->u.s_fixed.accum, dec->u.s_fixed.sat);
d_dump (dc->u.s_fixed.length, indent + 2)
break;
case DEMANGLE_COMPONENT_ARGLIST:
printf ("argument list\n");

Line 1656 d_number_component (struct d_info *di)
/* identifier ::= <(unqualified source code identifier)> */

static struct demangle_component *
d_identifier (struct d_info *di, int len)

{

const char *name;

Line 1677 d_identifier (struct d_info *di, int len
/* Look for something which looks like a gcc encoding of an

anonymous namespace, and replace it with a more user friendly
name. */
if (len >= (int) ANONYMOUS_NAMESPACE_PREFIX_LEN + 2
&& memcmp (name, ANONYMOUS_NAMESPACE_PREFIX,
ANONYMOUS_NAMESPACE_PREFIX_LEN) == 0)

Line 423 static struct demangle_component *d_sour

static long d_number (struct d_info *);
static struct demangle_component *d_identifier (struct d_info *, long);

static struct demangle_component *d_operator_name (struct d_info *);

Line 719 d_dump (struct demangle_component *dc, i
case DEMANGLE_COMPONENT_FIXED_TYPE:

printf ("fixed-point type, accum? %d, sat? %d\n",
dc->u.s_fixed.accum, dec->u.s_fixed.sat);
d_dump (dc->u.s_fixed.length, indent + 2);
break;
case DEMANGLE_COMPONENT_ARGLIST:
printf ("argument list\n");

Line 1660 d_number_component (struct d_info *di)
/* identifier ::= <(unqualified source code identifier)> */

static struct demangle_component *
d_identifier (struct d_info *di, long len)

{

const char *name;

Line 1681 d_identifier (struct d_info *di, int len
/* Look for something which looks like a gcc encoding of an

anonymous namespace, and replace it with a more user friendly
name. */
if (len >= (long) ANONYMOUS_NAMESPACE_PREFIX_LEN + 2
&& memcmp (name, ANONYMOUS_NAMESPACE_PREFIX,
ANONYMOUS_NAMESPACE_PREFIX_LEN) == 0)

* Applied patches iteratively, and re-
ran against all 57,000+ crashing
inputs (post-CMIN, all 30 runs)

. T

hose that

to this patc
* Broke apart patches that fix multiple

b

Ugs

NO longer crash are due
A

e Re-run must account for non-

de
¢ L

O

NIy it it fou

erminism
sed ASAN/UBSAN: “non crash”

Nd NO ISsue

Stack Hashes (N=3)

Bug # Hashes Matches False Matches Input count
A 9 2 7 228

B 362 343 19 31,103
C 24 21 3 106

D 159 119 4() 12,672
E 15 4 11 12,118
F 15 1 14 232

G 2 0 2 2

H 1 1 0 563

I g 1 0 10
unfixed 28 12 16 98
unknown 4 0 4 4

e 57,040 inputs handled by bugfix

98 Inputs never fixed

4 Inputs “fixed” but due to some
source of nondeterminism

* |n general: Far less over
counting
» At most 596 hashes for 9 bugs
*+ vS. 57,040 inputs for 9 bugs

 Hashes have talse negatives

Bug B has 343 hashes that apply
just to this bug, but 19 that apply
to others too

Count of crashes

AFL

cxxfilt: AFL CMIN vs. Bugs

AFLfast

NoO tri

al found more than 8 bugs

e Qut of 9 total

3 bugs account for most
crashing inputs

* many bugs have few inputs

* SO counting inputs misleading

Number of crashing inputs

corre
but O

ates with number of bugs,

nly loosely

Mann Whitney p-value is .066 for

* VS.

AFLFast bugs > AFL bugs

10-10 for “unigue” crashes

Metrics Summary

* This is just one program and set of fuzzing results,
but It shows the potential for heuristics to
- Massively overcount bugs (false positives)
- Miss bugs (false negatives)

- [he good news Is that the situation seems tilted towarad
the former

* As such, It seems prudent to attempt to measure
ground truth directly
» Use benchmarks with known bugs
» Might still use other programs, to avoid overfitting

How are things In late 20207 Better

Paper Where When Benchmark Baseline Trials Variance Crash Coverage Seed Timeout
S
DIE (JS) S&P 2020 R(3) Superion, CA 5C G*, C* E (path) R 24 H
ljon S&P 2020 C*, R* A 3 G E (path) M 24 H
Pangolin S&P 2020 R(9), L A, AF, Q, D, Angora, T-Fuzz 10 M-W G, C M* 24 H
Retrowrite |S&P 2020 L AFL in various modes 5 M-W G Vv 24 H
SAVIOR S&P 2020 L, R(8) A, AG, TFuzz, Angora, 5 M-W G, S- L 24x3 H
Driller, Q UBSAN(1)*
EcoFuzz Sec 2020 R(14), G A, AF, FairFuzz, ... 5 Yes G*, C E (path) ? 24 H
EcoFuzz 2 |Sec 2020 L Angora, VUzzer 572 G 5H
FiFUZZ Sec 2020 R(9) R(5- A, AF, AS, FairFuzz 37 G, O E ? 24 H
binutils)
GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E(path) R((10) 60H
Honggfuzz, Q
Montage Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G,V 72x88 H
(JS)
ParmeSan |Sec 2020 G Angorra 30 M-W G E Vv 48 H
Superion ICSE 2019 R(4) A, JSF G*, C L, M “100 cycles” (3
months)
Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3 H
UnTracer |S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 10 “within G, S- E (path) V 24*4 H
libFuzzer, R 5%” ASAN(1)
TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(%), S L R(4) 12 H
statistical
variations”

 14/15 papers’ results
pbased or

ground truth

- At least for part of their
benchmarks

e 10/15 also used “unique

crashes”

» Vary

effort

M

g levels of extra

to avolid over/

undercounts

- ASAN or UBSAN
INstrumentation

e 11/15 also measured

code coverage

larget Programs

paper benchmarks | baseline | trials | variance | crash | coverage | seed | timeout
MAYHEM][8] R(29) G ? N -
FuzzSim[55] R(101) B 100 C S R/M 10D
Dowser[22] R(7) O ? O N 8H
COVERSET[45] R(10) O S, G* ? R 12H
SYMFUZZ[9] R(8) A, B, Z S M 1H
MutaGen[29] R(8) R, Z S L Vv 24H
SDF|[35] R(1) Z, 0 O Vv 5D
Driller[50] C(126) A G L, E N 24H
QuickFuzz-1[20] R(?) 10 ? G -
AFLFast[6] R(6) A 8 C, G” E 6H, 24H
SeededFuzz[54] R(5) O M O G,R 2H
[57] R(2) A, O L, E Vv 2H
AFLGo(5] R(?) A, O 20 S L V/E | 8H, 24H
VUzzer[44] C(63), L, R(10) A G, S, O N 6H, 24H
SlowFuzz[41] R(10) O 100 - N
Steelix[33] C(17), L, R(5) AV, 0O C, G L,LE.M N 5H
Skyfire[53] R(4) O ? LM R, G LONG
kAFL[47] R(3) O 5 C, G* V | 4D, 12D
DIFUZE[13] R(7) O G* G 5H
Orthrus[49] G(4), R(2) AL O 80 C S, G* Vv ~7D
Chizpurfle[27] R(1) O G* G -
VDF|[25] R(18) C E Vv 30D
QuickFuzz-2[21] R(?) O 10 G* G, M
IMF[23] R(1) O G* O G 24H
[59] S(?) O 5 G G 24H
NEZHA[40] R(6) AL O 100 O R
[56] G(10) A, L Vv 5M
S2F[58] L, R(8) A, O G O N 5H, 24H
FairFuzz[32] R(9) A 20 C E V/M 24H
Angora[10] L, R(8) AV, 0 5 G, C L, E N 5H
T-Fuzz[39] C(296),L,.R(4@) | A,O 3 C, G* N 24H
MEDS|[24] S(2), R(12) O 10 C N 6H

Evaluations

30/32 used real programs

» Median of 7, as many as 100
» 2/32 use Google Fuzz Suite

- Fair/sufficient sample?

9/32 purposely-vulnerable
programs (or injected bugs)
« 5 use LAVA-M

+ 4 use CGC
» Ecological validity”?

Crashes found

1800

1600

1400

1200

1000

800

600

400

200 -

0
0

Binutils vs. Image proc.

nm (empty seed)

I

I

1

| I |

— afl
— aflfast - 1

10000 20000 30000 40000 50000 60000 70000 80000 90000
Time (seconds)

p < 1013

From AFLFast paper

Crashes found

600

500

400

300

200

100

0
0

FFmpeg (empty seed)

I

T

1

1

I

1

afl
aflfast .

10000 20000 30000 40000 50000 60000 70000 80000 90000

J —

Time (seconds)

0 =0.379

From VUzzer paper

Google Fuzz Test Suite

https://github.com/google/fuzzer-test-suite

24 programs and libraries with known bugs
» OpenSSL, PCRE, SQLite, libpng, libxml2, libarchive, ...

Comes with harness to connect to AFL and libfuzzer
- And confirm when a bug is discovered

This is a sort of regression suite, so its generality is
not entirely clear

Also, Google OSS-Fuzz project
» https://github.com/google/oss-fuzz

https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz
https://github.com/google/fuzzer-test-suite
https://github.com/google/oss-fuzz

Cyber Grand Challenge

o CGC is a suite of 296 programs constructed for

DARPA's Cyber Grand Challenge

- Intended to be ecologically valid, but also intended
to be challenging (gamification)

- Validity not confirmed (e.g., mean size is 1800 LOC)

» And subset iIn many papers

* (Good feature: Known ground truth (ielltale sign
when bug is triggered)

 hittps://github.com/trailofbits/cb-multios

https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios

L AVA-M

 LAVA is a bug injection methodology that adds "magic
number checks” to inputs that otherwise do not affect
control flow (much)

L AVA-M Is the result of using it to inject bugs Iin four open-
source programs (base64, md5sum, uniq, and who)
» 2000+ bugs injected in who (!)

e “A significant chunk of future work for LAVA involves
making the generated corpora look more like the bugs
that are found in real programs.”

* N

ttp://moyix.blogspot.com/2016/10/the-lava-synthetic-

b

Ug-corpora.html

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html

How are things In late 20207 Better

Paper Where When Benchmarks Baseline Trials Variance Crash Coverage Seed Timeout ® St a n d a rd b e n C h m a r kS
DIE(JS) |S&P 2020 R(3) Superion, CA 5C G*, C* E (path) R 24 H N g re a’[er Lse
ljon S&P 2020 C*, R* A 3 G E(path) M 24 H
Pangolin |S&P 2020 R(9), L A AF, Q, D, Angora, T-Fuzz 10 M-W G,C M* 24H e / / 15 yse | AVA-M
Retrowrite |S&P 2020 L AFL in various modes 5 M-W G Vv 24 H
SAVIOR [S&P 2020 L, R(8) A, AG, TFuzz, Angora, 5 M-W G, S- L 24x3 H ° 3/ 1 5 yse GOOg ‘GTS

Driller, Q UBSAN(1)*
EcoFuzz |Sec 2020 R(14),G A, AF FairFuzz, ... 5 Yes G',C E(pathy ? 24H 1/15 use CGC
EcoFuzz 2 |Sec 2020 L Angora, VUzzer 572 G 5H .
FiFUZZ Sec 2020 RO)R(- A, AF, AS, FairFuzz 3 7 G, O E ? 24 H All Orovi de groun d truth

binutils)

GreyOne Sec 2020 L, R(19) A, V, Angora, CollAFL, 5 G, C* E(path) R((10) 60H

Honggfuzz, Q) -
Montage Sec 2020 R(1) CA, JSF, JFuzzer 5 M-W G*, S R, G,V 72x88 H Rea‘ WO r‘ d p rOg ram S
(JS) :
ParmeSan |Sec 2020 G Angorra 30 M-W G E Vv 48 H Ofte n d IVG rse) u Sed
Superion |ICSE 2019 R(4) A, JSF G, C L, M “100 cycles” (3

months) b efo re

Zest ISSTA 2019 R(5) A, QC-junit 20 Yes G E V(1) 3H . - :
UnTracer |S&P 2019 R(8) AFL in various modes 8 M-W, A12 - - ? 24 H Som e l m p reSS lve
EnFuzz Sec 2019 L, G, R(15) A, AF, FairFuzz, Q, 10 “within G, S- E (path) V 24*4 H ' - '

libFuzzer, R 5%” ASAN(1) CIAOICeS 1 9 programs In
TIFF ACSAC 2018 L, R(9) AF, VUzzer 3 “marginal G(*), S L R(4) 12 H |

statistical Or e Case]

variations”

A Fuzzing Benchmark?

* A substantial (large) sample of relevant programs (look
at the breadth of existing fuzzing papers)

+ Some justification for ecological validity

» Should know ground truth

* Fuzzers should not overfit to the benchmark
Perhaps run a sample from a larger population

» May want to include non-benchmark programs too, despite
not necessarily having ground truth

Regular competition, like SAT competition”

 Google Fuzz, CGC, LAVA-M, current papers may be
good starting points

New! FuzzBencn

o https://github.com/google/fuzzbench

Our paper
Why do we need a fuzzer benchmarking platform?

Evaluating fuzz testing tools properly and rigorously is difficult, and typically needs time and
resources that most researchers do not have access to. A study on Evaluating Fuzz Testing analyzed
32 fuzzing research papers and has found that “no paper adheres to a sufficiently high standard of
evidence to justify general claims of effectiveness”. This is a problem because it can lead to
unreproducible results.

We created FuzzBench, so that all researchers and developers can evaluate their tools according to
the best practices and guidelines, with minimal effort and for free.

N

SIGPLAN Guidelines

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

New! FuzzBencn

o https://github.com/google/fuzzbench

Why do we need a fuzzer benchmarking platform? Fuzzer

Evaluating fuzz testing tools properly and rigorously is difficult, and typically needs time and

resources that most researchers do not have access to. A study on Evaluating Fuzz Testing analyzed
32 fuzzing research papers and has found that “no paper adheres to a sufficiently high standard of
evidence to justify general claims of effectiveness". This is a problem because it can lead to

unreproducible results.
google/fuzzbench
Researcher

We created FuzzBench, so that all researchers and developers can evaluate their tools according to
the best practices and guidelines, with minimal effort and for free.

Fuzzers +
Benchmarks

Mbxmi2 w2.9.2 (24hr, 20 triaisfuzzer)

&

z 2500 « Results

§ oo | < FuzzBench
. Service

¥ 15001

: 1000 +

Report

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

New! FuzzBencn

https://github.com/google/fuzzbench

21 programs and libraries with known bugs
» OpenSsL, SQLite3, WoltSSL, Zlib, Libpng, LIPCAP, ..
» Can use any OSS-Fuzz project as a benchmark

Connects to many fuzzers

Measures (via 20 trials, 24 hours)

- Median total edge coverage, and over time, per
program. Graphs median.

- Missing: measurement based on ground-truth bugs
- Stated plans to add it

https://github.com/google/fuzzbench
https://github.com/google/fuzzbench

2009.01120v1 [cs.CR] 2 Sep 2020

1V

- @

Magma: A Ground-Truth Fuzzing Benchmark

Ahmad Hazimeh Adrian Herrera Mathias Payer
EPFL Australian National University & EPFL
Defence Science and Technology
Group
ABSTRACT While these metrics provide some insight into a fuzzer’s perfor-

High scalability and low running costs have made fuzz testing the
de facto standard for discovering software bugs. Fuzzing techniques
are constantly being improved in a race to build the ultimate bug-
finding tool. However, while fuzzing excels at finding bugs in the
wild, evaluating and comparing fuzzer performance is challenging
due to the lack of metrics and benchmarks. For example, crash
count—perhaps the most commonly-used performance metric—
is inaccurate due to imperfections in deduplication techniques.
Additionally, the lack of a unified set of targets results in ad hoc
evaluations that hinder fair comparison.

We tackle these problems by developing Magma, a ground-truth
fuzzing benchmark that enables uniform fuzzer evaluation and com-
parison. By introducing real bugs into real software, Magma allows
for the realistic evaluation of fuzzers against a broad set of targets.
By instrumenting these bugs, Magma also enables the collection of
bug-centric performance metrics independent of the fuzzer. Magma
is an open benchmark consisting of seven targets that perform a va-
riety of input manipulations and complex computations, presenting
a challenge to state-of-the-art fuzzers.

We evaluate six widely-used mutation-based greybox fuzzers
(AFL, AFLFast, AFL++, FairFuzz, MOPT-AFL, and honggfuzz) against
Magma over 200 000 CPU-hours. Based on the number of bugs,
reached, triggered, and detected, we draw conclusions about the
fuzzers’ exploration and detection capabilities. This provides insight
into fuzzer performance evaluation, highlighting the importance of
ground truth in performing more accurate and meaningful evalua-
tions.

17 INTRODITICTION

mance, we argue that they are insufficient for use in fuzzer compar-
isons. Furthermore, the set of target programs that these metrics
are evaluated on can vary wildly across papers, making cross-paper

comparisons impossible. The deficiencies of these three metrics are
discussed in turn.

Crash counts. The simplest method for evaluating a fuzzer is
to count the number of crashes triggered by that fuzzer, and com-
pare this crash count with that achieved by another fuzzer on the
same target program. Unfortunately, crash counts often inflate the
number of actual bugs in the target program [29]. Moreover, dedu-
plication techniques (e.g., coverage profiles, stack hashes) fail to
accurately identify the root cause of these crashes [9, 29].

Bug counts. Identifying a crash’s root cause is preferable to simply
reporting raw crashes, as it avoids the inflation problem inherent
in crash counts. Unfortunately, obtaining an accurate ground-truth
bug count typically requires extensive manual triage, which in
turn requires someone with extensive domain expertise and experi-
ence [1].

Code-coverage profiles. Due to the difficulty in obtaining ground-
truth bug counts, code-coverage profiles are another performance
metric commonly used to evaluate and compare fuzzing techniques.
Intuitively, covering more code correlates with finding more bugs.
However, previous work [29] has shown that there is a weak cor-
relation between coverage-deduplicated crashes and ground-truth
bugs, implying that higher coverage does not necessarily indicate
better fuzzer effectiveness.

The deficiencies of existing performance metrics calls for a re-
think of fuzzer evaluation practices. In particular, the performance
metrics used in these evaluations must accurately measure a fuzzer’s

o ™ .

ummary: Do's and Don'ts

Do assess a random process using multiple trials and
a statistical test
» Don't run just one trial
- Don’t compute just the mean/median

| §

 Don’t use heuristics as only performance measure
« Some results should be based on ground truth

* Do clarify choice of seed
- Evaluate several, including the empty seed

Do use longer timeout and measure performance over
time

 Use a good benchmark suite (to be developed!

General advice: SIGPLAN guidelines!

i
_
<

—
—= :
; =
| 38 : -
'3 "l)
¥ ‘] v 3
i) = A

http://sigplan.org/Resources/EmpiricalEvaluation/

http://sigplan.org/Resources/EmpiricalEvaluation/
http://sigplan.org/Resources/EmpiricalEvaluation/

