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The Principle of Least Privilege
• It requires that the individual components of a system need to have a 

minimal set of permissions to perform their functionality. 
• Privilege separation and intraprocess memory isolation are just some of the ways of 

enforcing this principle. 
• Spectre V1 attack was an example of an intraprocess memory attack where a secret was 

leaked despite not being accessed by the program at all.

• In our paper:
• We demonstrate how intraprocess isolation techniques such as Memory Protection Keys 

(MPKs) and ELF-based Access Control (ELFbac) can be effective in mitigating the Spectre 
V1 attack. 

• We enforce the policy that a secret after initialization must not be touched. 
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Speculative Execution

• Instructions within a pipeline are 
executed out of order. 

• The results are later reordered and 
the dependencies are satisfied to 
assure semantics are maintained.

• Speculative execution predicts the 
control flow and executes 
instructions prior to knowing if they 
are required.
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Source: https://www.extremetech.com/computing/261792-what-is-speculative-
execution



Branch Prediction

• Dynamic Branch Predictors use:
• Single bit: simply storing the last branch 

taken.
• Multi bit: Pattern History Tables (PHTs)

• PHTs store the history of the 
branches taken to allow future 
branches to be predicted. 

• Neural Networks have also been 
designed to predict branches.
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Speculative Execution Attacks

• In 2018, CVE-2017-5753 
introduced “Spectre”

• CPUs MUST flush pipeline when 
miss-speculation occurs. 

• Flushing does occur for the pipeline, 
but not for the caches and 
microarchitectural effects remain 
after the transient instructions. 
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Spectre V1 PoC

7

• There’s a speculative bypass of the bounds 
check. 

• The underlying technique for V1 is to exploit 
the branch prediction by poisoning the PHT 
to mispredict this conditional branch.

• Train the CPU with valid values for x
• Give a bad x value.
• CPU speculates and caches an 

“index” into array2. 
• Use timing side channel to recover 

“secret” from array2. 
• The program, however, never touches the 

“secret”

void victim_function(size_t x) {
  if (x < array1_size) {

temp &= array2[array1[x] * 512];
  }
}

array1_size=16

array1 array2 secret

Attacker controls x



Ways people have mitigated it in commercial 
software
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What about Linux?
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ELF-based Access Control
• ELFbac uses policy-infused 

binaries.
• ELF binaries contain sections and 

segments. 
• Sections define semantically distinct 

units of a program: code, data, 
metadata, etc.

• Segments group sections. 
• They define the permissions of the 

memory sections. 
• What if we can enforce 

permissions on the sections 
instead of the segments? Fine-
grained access control in binaries.  11elfbac.org



Injecting the policy
• We isolate the global data such as 

the “secret” in the case of Spectre 
into a separate section using the 
__attribute__ gcc syntax.

• The policy is described in a 
domain-specific language based 
on Ruby.

• The policy gets added to the binary 
as a separate ELF section. 
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How does ELFbac enforce policy?
• The loader is policy aware. 
• The kernel enforces the policy:

• All the pages are unmapped. At each 
new access, there is a page fault and 
the permissions are checked.

• During a state transition, the TLBs are 
flushed to invalidate all the entries and 
the cache. 

• So what does the program’s 
address space look like?
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Process view               vs.                  Kernel View
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ELFbac policy vs. Spectre

• In the V1 PoC, apart from 
initialization, the rest of the 
program does not touch the 
variable “secret”

• We divide the program into two 
states.

• Only the init state has access to the 
secret.

• The program transitions to the go 
immediately after initialization of all the 
globals.
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ELFbac policy vs. Spectre (contd.)
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Limitations in this approach

● Since there is a TLB flush on state transitions, there is a huge performance hit. 

● The performance hit gets compounded because the pages are lazily loaded.

● The number of page faults is much higher as we’ll see in the evaluation. 

● Maybe there is another way to enforce intraprocess isolation?
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Memory Protection Keys

• Since the permission enforcement 
happens via page faults and TLB 
flushes, this does incur a huge 
overhead. 

• Page table entries on Linux include 
4 bits reserved for the security 
domain or state in which this page 
would be accessible.

• The PKRU register stores 2 bits for 
each state or security domain: read 
and write permissions for the 
domain. 19



Memory Protection Keys (contd.)
• We implemented the same state 

machine as earlier. 
• Init state where initialization is allowed.
• Go state where access to the secret 

is revoked.

• We revoked permissions to the 
secret after it was initialized. 

• WRPKRU is a user-land 
instruction. 
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int real_prot = PROT_NONE;
int pkey = pkey_alloc (0, 
PKEY_DISABLE_WRITE);
int ret = pkey_mprotect(secret , 
getpagesize (), real_prot , pkey);
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Evaluation
• Is intraprocess memory isolation effective against SpectreV1?
• What is the programmer effort required to build a policy for ELFbac and to 

modify the existing source code? 
• How does ELFbac compare in terms of programmer effort to other mitigation 

techniques against Spectre V1?
• What is the performance impact due to ELFbac and MPKs in comparison to 

other mitigations?
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ELFbac and MPKs vs. Spectre V1
• We built two policies for ELFbac: one allowing Spectre V1 PoC to execute, 

and another to disallow it. 
• We also built two modifications of our MPK implementation to again allow 

and disallow the attack. 
• In both cases, when the protections are turned on, we found that the secret 

was not found since the speculative branch is unable to access the secrets.
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Demo of the PoC
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Programmer Effort

• Using serializing instructions such 
as lfence would only include 
adding one line of code. 

• However, we would need to 
identify every instance of code that 
can be speculatively executed and 
add an lfence.

• The process of building the right 
ELFbac policy involves a lot of trial 
and error. 
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Performance
• We performed our ELFbac 

experiments on an Intel Xeon 
E31245 3.30 GHz processor with 
four cores and 4GB RAM running 
a modified ELFbac kernel and 
Loader. 

• MPK experiments were done on an 
Intel Xeon Platinum 8168 instance 
on Microsoft Azure Cloud with 
support for MPKs with one core 
and 2GB RAM. 
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Discussion and Conclusions

• Our work using ELFbac and MPKs are isolated to Intraprocess memory 
attacks such as Spectre V1. 

• SpectreRSB and Spectre 1.1 are also intraprocess memory attacks and could be mitigated 
using the same technique. 

• SpectreRSB attacks exploiting multiple processes and the Intel SGX, however, are not in the 
scope of ELFbac that targets intraprocess memory attacks.

•  ELFbac does need some speed enhancements. We are working on a 
version of ELFbac that uses MPKs for intraprocess isolation. 

• Neither ELFbac nor MPKs mitigate vulnerabilities entirely, but isolate them 
and make life harder for attackers.
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