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Protec'ng	Privacy	is	Important	

Class	ac'on	lawsuit	accuses	AOL	of	viola'ng	the	Electronic	Communica'ons	
Privacy	Act,	seeks	$5,000	in	damages	per	user.	AOL’s	director	of	research	is	fired.		



Protec'ng	Privacy	is	Important	

Class	ac'on	lawsuit	(Doe	v.	NePlix)	accuses	NePlix	of	viola'ng	the	Video	Privacy	
Protec'on	Act,	seeks	$2,000	in	compensa'on	for	each	of	NePlix’s	2,000,000	
subscribers.	SeVled	for	undisclosed	sum,	2nd	NePlix	Challenge	is	cancelled.		



Protec'ng	Privacy	is	Important	

The	Na'onal	Human	Genome	Research	Ins'tute	(NHGRI)	immediately	restricted	
pooled	genomic	data	that	had	previously	been	publically	available.		



But	what	is	“privacy”?	



But	what	is	“privacy”	not?	

•  Privacy	is	not	hiding	“personally	iden'fiable	
informa'on”	(name,	zip	code,	age,	etc…)	
	



But	what	is	“privacy”	not?	

•  Privacy	is	not	releasing	only	“aggregate”	sta's'cs.	
	



So	what	is	privacy?	

•  Idea:	Privacy	is	about	promising	people	freedom	from	harm.		
– AVempt	1:	“An	analysis	of	a	dataset	D	is	private	if	the	data	analyst	
knows	no	more	about	Alice	a9er	the	analysis	than	he	knew	about	
Alice	before	the	analysis.”	



So	what	is	privacy?	

•  Problem:	Impossible	to	achieve	with	auxiliary	informa'on.	
– Suppose	an	insurance	company	knows	that	Alice	is	a	smoker.	
– An	analysis	that	reveals	that	smoking	and	lung	cancer	are	correlated	
might	cause	them	to	raise	her	rates!	

•  Was	her	privacy	violated?	
•  This	is	exactly	the	sort	of	informa'on	we	want	to	be	able	to	learn…	
– This	is	a	problem	even	if	Alice	was	not	in	the	database!	



So	what	is	privacy?	

•  Idea:	Privacy	is	about	promising	people	freedom	from	harm.		
– AVempt	2:	“An	analysis	of	a	dataset	D	is	private	if	the	data	analyst	
knows	almost	no	more	about	Alice	a9er	the	analysis	than	he	would	
have	known	had	he	conducted	the	same	analysis	on	an	iden=cal	
database	with	Alice’s	data	removed.”		



So	What	is	Differen'al	Privacy?		
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Differen'al	Privacy	

𝑋:	The	data	universe.		
𝐷⊂𝑋:	The	dataset	(one	element	per	person)	
	

Defini'on:	Two	datasets	𝐷, ​𝐷↑′ ⊂𝑋	are	neighbors	
if	they	differ	in	the	data	of	a	single	individual.	



Differen'al	Privacy	

𝑋:	The	data	universe.		
𝐷⊂𝑋:	The	dataset	(one	element	per	person)	
	

Defini'on:	An	algorithm	𝑀	is	𝜖-differen'ally	
private	if	for	all	pairs	of	neighboring	datasets	
𝐷, ​𝐷↑′ ,	and	for	all	outputs	x:	

​Pr⁠[𝑀(𝐷)=𝑥] ≤(1+𝜖) ​Pr⁠[𝑀(​𝐷↑′ )=𝑥] 	



Some	Useful	Proper'es	

	
	

Theorem	(Postprocessing):	If	𝑀(𝐷)	is	𝜖-private,	and	𝑓	is	any	
(randomized)	func'on,	then	𝑓(𝑀(𝐷))	is	𝜖-private.	



So…	

𝑥=	

Defini'on:	An	algorithm	𝑀	is	𝜖-differen'ally	
private	if	for	all	pairs	of	neighboring	datasets	
𝐷, ​𝐷↑′ ,	and	for	all	outputs	x:	

​Pr⁠[𝑀(𝐷)=𝑥] ≤(1+𝜖) ​Pr⁠[𝑀(​𝐷↑′ )=𝑥] 	



So…	

𝑥=	

Defini'on:	An	algorithm	𝑀	is	𝜖-differen'ally	
private	if	for	all	pairs	of	neighboring	datasets	
𝐷, ​𝐷↑′ ,	and	for	all	outputs	x:	

​Pr⁠[𝑀(𝐷)=𝑥] ≤(1+𝜖) ​Pr⁠[𝑀(​𝐷↑′ )=𝑥] 	



So…	

𝑥=	

Defini'on:	An	algorithm	𝑀	is	𝜖-differen'ally	
private	if	for	all	pairs	of	neighboring	datasets	
𝐷, ​𝐷↑′ ,	and	for	all	outputs	x:	

​Pr⁠[𝑀(𝐷)=𝑥] ≤(1+𝜖) ​Pr⁠[𝑀(​𝐷↑′ )=𝑥] 	



Some	Useful	Proper'es	

	
Theorem	(Composi'on):	If	 ​𝑀↓1 ,…, ​𝑀↓𝑘 	

are	𝜖-private,	then:	
𝑀(𝐷)≡( ​𝑀↓1 (𝐷),…, ​𝑀↓𝑘 (𝐷))	

is	𝑘𝜖-private.			



So…	

	
You	can	go	about	designing	algorithms	as	you	normally	would.	
Just	access	the	data	using	differen'ally	private	“subrou'nes”,	

and	keep	track	of	your	“privacy	budget”	as	a	resource.		
Private	algorithm	design,	like	regular	algorithm	design,	can	be	

modular.		



Some	simple	opera'ons:	
Answering	Numeric	Queries	

Def:	A	numeric	func'on	𝑓	has	sensi'vity	𝑐	if	for	all	neighboring	
𝐷, ​𝐷↑′ :	

|𝑓(𝐷)−𝑓(​𝐷↑′ )|≤𝑐	
Write	𝑠(𝑓)≡𝑐	

•  e.g.	“How	many	professors	are	in	the	building?”	has	sensi'vity	
1.		

•  “What	frac'on	of	people	in	the	building	are	professors?”	has	
sensi'vity	 ​1/𝑛 .	



Some	simple	opera'ons:	
Answering	Numeric	Queries	

The	Laplace	Mechanism:	
​𝑀↓𝐿𝑎𝑝 (𝐷,𝑓,𝜖)=𝑓(𝐷)+𝐿𝑎𝑝(​𝑠(𝑓)/𝜖 )	
Theorem:	 ​𝑀↓𝐿𝑎𝑝 (⋅,𝑓,𝜖)	is	𝜖-private.	



Some	simple	opera'ons:	
Answering	Numeric	Queries	

The	Laplace	Mechanism:	
​𝑀↓𝐿𝑎𝑝 (𝐷,𝑓,𝜖)=𝑓(𝐷)+𝐿𝑎𝑝(​𝑠(𝑓)/𝜖 )	
Theorem:	The	expected	error	is	​𝑠(𝑓)/𝜖 	

(can	answer	“what	frac'on	of	people	in	the	building	are	
professors?”	with	error	0.2%)	

	



Some	simple	opera'ons:	
Answering	Non-numeric	Queries	

“What	is	the	modal	eye	color	in	the	room?”	
𝑅={Blue, Green, Brown, Red}	

	
•  If	you	can	define	a	func'on	that	determines	how	“good”	each	
outcome	is	for	a	fixed	input:	
– E.g.	


𝑞(𝐷, Red)=“frac'on	of	people	in	D	with	red	eyes”	



Some	simple	opera'ons:	
Answering	Non-numeric	Queries	

​𝑀↓𝐸𝑥𝑝 (𝐷,𝑅,𝑞, 𝜖):		
Output	𝑟∈𝑅	w.p.	∝​𝑒↑2𝜖⋅𝑞(𝐷,𝑟) 	

	
Theorem:	 ​𝑀↓𝐸𝑥𝑝 (𝐷,𝑅,𝑞, 𝜖)	is	𝑠(𝑞)⋅𝜖-private,	and	outputs	𝑟∈𝑅	such	

that:	
𝐸[|𝑞(𝐷,𝑟)− ​​max┬​𝑟↑∗ ∈𝑅  ⁠𝑞(𝐷, ​𝑟↑∗ ) |]≤ ​2𝑠(𝑞)/𝜖 ⋅ ​ln ⁠|𝑅| 	

	
(can	find	a	color	that	has	frequency	within	0.5%	of	the	modal	color	in	

the	building)		
	
	



So	what	can	we	do	with	that?		

Empirical	Risk	Minimiza'on:	
*i.e.	almost	all	of	supervised	learning	
	

Find	𝜃	to	minimize:	
𝐿(𝜃)=∑𝑖=1↑𝑛▒ℓ(𝜃, (​𝑥↓𝑖 , ​𝑦↓𝑖 )) 	



Stochas'c	Gradient	Descent	

	
	

Convergence	depends	on	the	fact	that	at	each	round:	𝔼[​𝑔↓𝑡 ]=𝛻L(𝜃)	

Let	 ​𝜃↑1 = ​0↑𝑑 	
For	𝑡=1	to	𝑇:	

Pick	𝑖	at	random.	Let	 ​𝑔↓𝑡 ←𝛻ℓ(​𝜃↑𝑡 ,(​𝑥↓𝑖 , ​𝑦↓𝑖 ))	
Let	 ​𝜃↑𝑡+1 ←​𝜃↑𝑡 −𝜂⋅ ​𝑔↓𝑡 	



Private	Stochas'c	Gradient	Descent	

	
	

S'll	have:	𝔼[​​𝑔 ↓𝑡 ]=𝛻L(𝜃)!	
(Can	s'll	prove	convergence	theorems,	and	run	the	algorithm…)	

	
Privacy	guarantees	can	be	computed	from:	
1)  The	privacy	of	the	Laplace	mechanism	

2)  Preserva'on	of	privacy	under	post-processing,	and	
3)  Composi'on	of	privacy	guarantees.		

Let	 ​𝜃↑1 = ​0↑𝑑 	
For	𝑡=1	to	𝑇:	

Pick	𝑖	at	random.	Let	 ​​𝑔 ↓𝑡 ←𝛻ℓ(​𝜃↑𝑡 ,(​𝑥↓𝑖 , ​𝑦↓𝑖 ))+𝐿𝑎𝑝​
(𝜎)↑𝑑 	
Let	 ​𝜃↑𝑡+1 ←​𝜃↑𝑡 −𝜂⋅ ​​𝑔 ↓𝑡 	



What	else	can	we	do?	
•  Sta's'cal	Es'ma'on	
•  Graph	Analysis	
•  Combinatorial	Op'miza'on	
•  Spectral	Analysis	of	Matrices	
•  Anomaly	Detec'on/Analysis	of	Data	Streams	
•  Convex	Op'miza'on	
•  Equilibrium	computa'on	
•  Computa'on	of	op'mal	1-sided	and	2-sided	matchings	
•  Pareto	Op'mal	Exchanges	
•  …	



Differen'al	Privacy	⇒	Learning	

Theorem*:	An	𝜖-differen'ally	private	algorithm	cannot	overfit	its	
training	set	by	more	than	𝜖.	
	
	
	
	
	
*Lots	of	interes'ng	details	missing!		



Choosing	a	Formalism:		
Sta's'cal	Queries	

•  A	data	universe	𝑋		
•  A	distribu'on	𝑃∈Δ𝑋	
•  A	dataset	𝐷⊆𝑋	consis'ng	of	𝑛	points	𝑥∈𝑋	sampled	i.i.d.	from	

𝑃.	

𝑷	 𝑫	



Choosing	a	Formalism:		
Sta's'cal	Queries	

•  A	sta=s=cal	query	is	defined	by	a	predicate	
𝜙:𝑋→[0,1].	

	
•  The	value	of	a	sta's'cal	query	is		
𝜙(𝑃)= ​𝐸↓𝑥∼𝑃 [𝜙(𝑥)]	
	
•  A	sta's'cal	es'mator	is	an	algorithm	for	es'ma'ng	sta's'cal	
query:	 ​𝐴↓𝐷 (𝜙)→[0,1]	



Choosing	a	Formalism:		
Sta's'cal	Queries	

Loses	liVle	generality.	Captures,	e.g.	
•  Means,	variances,	correla'ons,	etc.	
•  Risk	of	a	hypothesis:	

	𝑅(ℎ)= ​E↓(𝑥,𝑦)∼𝑃 [𝐿(ℎ(𝑥),𝑦)]]	
•  Gradient	of	risk	of	a	hypothesis:	

	𝛻𝑅(ℎ)= ​E↓(𝑥,𝑦)∼𝑃 [𝛻𝐿(ℎ(𝑥),𝑦)]]	
•  Almost*	all	of	PAC	learning	
		*Except	Parity	func=ons	



Choosing	a	Formalism:		
Sta's'cal	Queries	

•  Adap'vely	Chosen	Queries:	

	

	

𝑨	
𝑫	​𝜙↓1 	

​𝑎↓1 	

𝑷	



Choosing	a	Formalism:		
Sta's'cal	Queries	

•  Adap'vely	Chosen	Queries:	

	

𝑨	
𝑫	​𝜙↓2 	

​𝑎↓2 	

𝑷	



Choosing	a	Formalism:		
Sta's'cal	Queries	

•  Adap'vely	Chosen	Queries:	

	

•  A	sta's'cal	es'mator	𝐴	is	(𝜖,𝛿)-accurate	for		sequences	of	𝑘	
adap'vely	chosen	queries	​𝜙↓1 ,…, ​𝜙↓𝑘 	if	for	all							and										,	with	
probability	1−𝛿:	

​​max┬𝑖  ⁠|​𝐴↓𝐷 (​𝜙↓𝑖 )− ​𝜙↓𝑖 (𝑃)| ≤𝜖.	

𝑨	
𝑫	​𝜙↓𝑖 	

​𝑎↓𝑖 	

𝑷	

𝑷

​𝜙↓𝑘 	

​𝑎↓𝑘 	



A	Baseline	

•  Non-Adap've	Queries:	

•  The	“empirical	average	mechanism”:	​𝐴↓𝐷 (𝜙)=𝜙(𝐷)≔ ​1/𝑛 ∑𝑥∈𝐷↑▒𝜙(𝑥) 	
can	answer	𝑘	non-adap=ve	queries	with	(0.01,0.01)-accuracy	where:	

𝑘= ​𝑒↑Θ(𝑛) 	

𝑨	
𝑫	

𝑷	
​𝝓↓𝟏 	

​𝝓↓𝒌 	

​𝑎↓1 	

​𝑎↓𝑘 	



A	Baseline	

•  Non-Adap've	Queries:	

•  The	“empirical	average	mechanism”:	​𝐴↓𝐷 (𝜙)=𝜙(𝐷)≔ ​1/𝑛 ∑𝑥∈𝐷↑▒𝜙(𝑥) 	
can	answer	𝑘	adap=ve	queries	with	(0.01,0.01)-accuracy	where:	


𝑘=O(𝑛)	

𝑨	
𝑫	

𝑷	

​𝑎↓1 	

​𝑎↓𝑘 	



Differen'al	Privacy	⇒	Learning	

Theorem:	[DFHPRR’15,BNSSSU’16]:		
Let	𝐴	be	a	sta's'cal	es'mator	for	adap'vely	chosen	sta's'cal	
queries.	Let	𝑃	be	any	distribu'on,	and	let	𝐷∼ ​𝑃↑𝑛 .	If:	
1. 𝐴	is	(𝜖,𝜖⋅𝛿)-differen'ally	private,	and	
2. 𝐴	is	(𝜖, 𝜖⋅𝛿)-accurate	with	respect	to	the	sample	𝐷,	then:	
𝐴	is	(O(𝜖), 𝑂(𝛿))-accurate	with	respect	to	the	distribu=on	𝑃.	



Applica'ons	

Using	Independent	Gaussian	Perturba'on	
	

Theorem:	There	exists	a	simple,	computa'onally	efficient		
sta's'cal	es'mator	that	can	answer	𝑘	adap=ve	queries	to	non-
trivial	accuracy	where:	

𝑘= ​Θ ( ​𝑛↑2 )	
	

A	quadra=c	improvement	over	the	empirical	average	
mechanism!	



Applica'ons	

Using	State	of	the	Art	Differen'ally	Private	Mechanisms	
	

Theorem:	There	exists	a	sta's'cal	es'mator	that	can	answer	𝑘	
adap=ve	queries	to	non-trivial	accuracy	where:	

𝑘= ​𝑒↑Θ(​𝑛/​log ⁠|𝑋|  ) 	
	

An	exponen=al	improvement	if	the	data	universe	𝑋	is	finite	and	
𝑛≫​log ⁠|𝑋| .		



Applica'ons	

Data	

training	data	

Reusable		
holdout	

unrestricted	
access	

can	be	used	
many	'mes	
adap'vely	

valid	es'mate	every	'me	you	use	the	holdout	



from numpy import * !
!
def Thresholdout(sample, holdout, q, sigma, 
threshold): !
  sample_mean = mean([q(x) for x in sample]) !
  holdout_mean = mean([q(x) for x in holdout]) !
if (abs(sample_mean - holdout_mean) !
       < random.normal(threshold, sigma)): !
    # q does not overfit!
    return sample_mean!
  else: !
    # q overfits!
    return holdout_mean + random.normal(0, 
sigma)   !

thresholdout.py: !

Thresholdout	[DFHPRR15]	



Reusable	holdout	example	

•  Data	set	with	2n	=	20,000	rows	and	d	=	10,000	
variables.	Class	labels	in	{-1,1}	

•  Analyst	performs	stepwise variable selection: !
1.  Split	data	into	training/holdout	of	size	n	
2.  Select	“best”	k	variables	on	training	data	
3. Only	use	variables	also	good	on	holdout	
4. Build	linear	predictor	out	of	k	variables	
5.  Find	best	k	=	10,20,30,…	



Classifica'on	aver	feature	selec'on	

No signal: data	are	random	gaussians		
labels	are	drawn	independently	at	random	from	{-1,1}	

Thresholdout	correctly	detects	overfiwng!	



Strong signal:	20	features	are	mildly	correlated	with	target	
remaining	aVributes	are	uncorrelated	

Thresholdout	correctly	detects	right	model	size!	

Classifica'on	aver	feature	selec'on	



So…		

•  Differen'al	privacy	provides:	
– A	rigorous,	provable	guarantee	with	a	strong	privacy	seman'cs.		
– A	set	of	tools	and	composi'on	theorems	that	allow	for	modular,	easy	
design	of	privacy	preserving	algorithms.	

– Protec=on	against	overfiIng	even	when	privacy	is	not	a	concern.		
	



Thanks!	

To	learn	more:	
•  Our	textbook	on	differen'al	privacy:	
– Available	for	free	on	my	website:	hVp://www.cis.upenn.edu/~aaroth	

•  Connec'ons	between	Privacy	and	Overfiwng:	
–  Dwork,	Feldman,	Hardt,	Pitassi,	Reingold,	Roth,	“The	Reusable	Holdout:	Preserving	Validity	in	Adap=ve	Data	Analysis”,	

Science,	August	7	2015.	
–  Dwork,	Feldman,	Hardt,	Pitassi,	Reingold,	Roth,	“Preserving	Sta=s=cal	Validity	in	Adap=ve	Data	Analysis”,	STOC	2015.		
–  Bassily,	Nissim,	Stemmer,	Smith,	Steinke,	Ullman,	“Algorithmic	Stability	for	Adap=ve	Data	Analysis”,	STOC	2016.	
–  Rogers,	Roth,	Smith,	Thakkar,	“Max	Informa=on,	Differen=al	Privacy,	and	Post-Selec=on	Hypothesis	Tes=ng”,	FOCS	2016.	
–  Cummings,	LigeV,	Nissim,	Roth,	Wu,	“Adap=ve	Learning	with	Robust	Generaliza=on	Guarantees”,	COLT	2016.		

	


