Measuring the Security Impacts of Password Policies Using Cognitive Behavioral Agent-Based Modeling

Vijay Kothari 1 $\,$ Jim Blythe 2 $\,$ Sean Smith 1 $\,$ Ross Koppel 3

¹Dartmouth College

²University of Southern California

⁴University of Pennsylvania

Results

Future Work

Conclusion

Outline

The Grand Vision

The Password Problem

DASH

DASHwords

Results

Future Work

Conclusion

The Grand Vision

• **Problem:** Those pesky humans make security hard.

The Grand Vision

- **Problem:** Those pesky humans make security hard.
- Goal: To create security tools that account for the human.

The Grand Vision

- **Problem:** Those pesky humans make security hard.
- **Goal:** To create security tools that account for the human.
- Approach: Human-centric agent-based models.

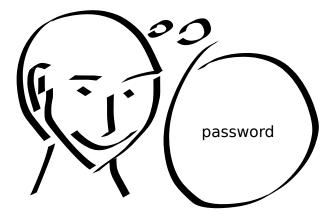
Results

Future Work

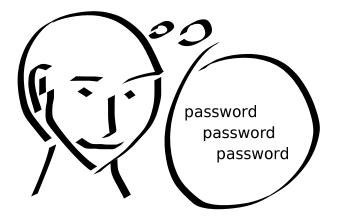
Conclusion

The Password Problem

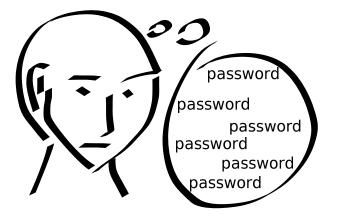
► Users make weak passwords.


- ► Users make weak passwords.
- So, let's strengthen the password composition policy!

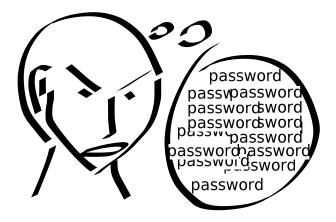
The Password Problem

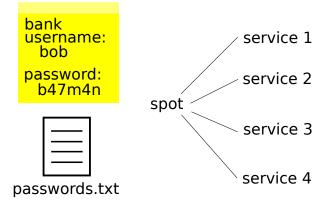

- Users make weak passwords.
- So, let's strengthen the password composition policy!
- 1. The password must be exactly 8 characters long.
- 2. It must contain at least one letter, one number, and one special character.
- 3. The only special characters allowed are: @ # \$
- 4. A special character must not be located in the first or last position.
- 5. Two of the same characters sitting next to each other are considered to be a "set." No "sets" are allowed.
- 6. Avoid using names, such as your name, user ID, or the name of your company or employer.
- 7. Other words that cannot be used are Texas, child, and the months of the year.
- 8. A new password cannot be too similar to the previous password.
 - a. Example: previous password abc#1234, acceptable new password acb\$1243
 - b. Characters in the first, second, and third positions cannot be identical. (abc****)
 - c. Characters in the second, third, and fourth positions cannot be identical. (*bc#****)
 - d. Characters in the sixth, seventh, and eighth positions cannot be identical. (*****234)
- A password can be changed voluntarily (no Help Desk assistance needed) once in a 15-day period. If needed, the Help Desk can
 reset the password at any time.
- 10. The previous 8 passwords cannot be reused.

source: http://kottke.org/12/06/the-worlds-worst-password-requirements-list


Conclusion

Conclusion


Conclusion



Results

Future Work

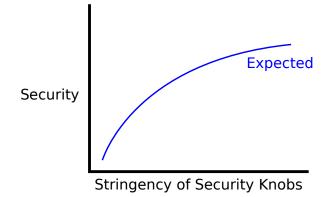
Conclusion

Results

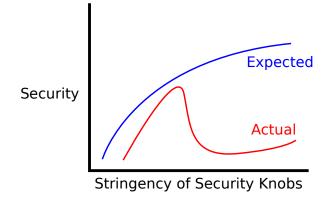
Future Work

Conclusion

The Password Problem

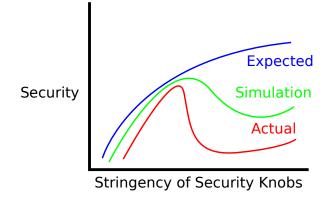

Can we stop circumvention?

- Can we stop circumvention?
- Can we set better password policies?

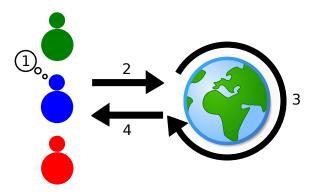

Conclusion

- Can we stop circumvention?
- Can we set better password policies?
- How do we choose these policies?

Agent-Based Simulations for Security



Agent-Based Simulations for Security


Results

Agent-Based Simulations for Security

Conclusion

Bird's Eye View of DASH

source for earth image: http://commons.wikimedia.org/wiki/File:Ambox_globe.svg

References:

- 1. A Dual-Process Cognitive Model for Testing Resilient Control Systems (Jim Blythe)
- 2. Implementing Models (Jim Blythe and Jean Camp)

Conclusion

DASHWords - Overview

Agents:

- create accounts
- ▶ sign in to accounts
- sign out of accounts

Future Work

Conclusion

DASHWords - Overview

Agents:

- create accounts
- sign in to accounts
- sign out of accounts
- They also circumvent.

Conclusion

DASHWords - Overview

Agents:

- create accounts
- sign in to accounts
- sign out of accounts
- They also circumvent.
- Key underlying models:
 - cognitive burden
 - password recall
 - attack threats

Results

Future Work

Conclusion

Modeling Cognitive Burden:

Users can't cope with passwords.

Results

Future Work

Conclusion

Modeling Cognitive Burden:

- Users can't cope with passwords.
- So, they circumvent.

Results

Future Work

Conclusion

Modeling Cognitive Burden:

- Users can't cope with passwords.
- So, they circumvent.
- Can we model cognitive burden?

• Lev (S_1, S_2) : minimum number of edits to convert S_1 into S_2 .

Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?

- Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?
 - ▶ $pass \rightarrow p4ss \rightarrow p4sS$

- Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?
 - $pass \rightarrow p4ss \rightarrow p4sS$
 - Lev(pass, p4sS) = 2

- Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?
 - $pass \rightarrow p4ss \rightarrow p4sS$
 - Lev(pass, p4sS) = 2
- Example 2: $Lev(\epsilon, pass)$?

- Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?
 - $pass \rightarrow p4ss \rightarrow p4sS$
 - Lev(pass, p4sS) = 2
- Example 2: Lev(e, pass)?
 - $\epsilon \rightarrow p \rightarrow pa \rightarrow pas \rightarrow pass$

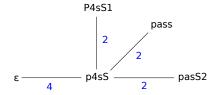
- Lev(S₁, S₂): minimum number of edits to convert S₁ into S₂. Example 1: Lev(pass, p4sS)?
 - $pass \rightarrow p4ss \rightarrow p4sS$
 - Lev(pass, p4sS) = 2
- Example 2: Lev(\(\epsilon\), pass)?

•
$$\epsilon \rightarrow p \rightarrow pa \rightarrow pas \rightarrow pass$$

• $Lev(\epsilon, pass) = 4$

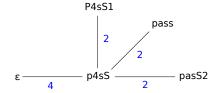
Modeling Cognitive Burden: Levenshtein Set Measure

DASH


• Let L(S) be the weight of a MST with vertex set $S \cup \{\epsilon\}$.

Modeling Cognitive Burden: Levenshtein Set Measure

- Let L(S) be the weight of a MST with vertex set $S \cup \{\epsilon\}$.
- Suppose $S = \{\epsilon, pass, p4sS, P4sS1, pasS2\}$.


Modeling Cognitive Burden: Levenshtein Set Measure

- Let L(S) be the weight of a MST with vertex set S ∪ {ε}.
- Suppose $S = \{\epsilon, pass, p4sS, P4sS1, pasS2\}$.

Modeling Cognitive Burden: Levenshtein Set Measure

- Let L(S) be the weight of a MST with vertex set S ∪ {ε}.
- Suppose $S = \{\epsilon, pass, p4sS, P4sS1, pasS2\}$.

L(S) = 4 + 2 + 2 + 2 = 8

Results

Modeling Cognitive Burden: Cognitive Thresholds

Use Levenshtein set measure for cognitive burden!

Modeling Cognitive Burden: Cognitive Thresholds

- Use Levenshtein set measure for cognitive burden!
- Cognitive burden and circumvention:

Modeling Cognitive Burden: Cognitive Thresholds

- Use Levenshtein set measure for cognitive burden!
- Cognitive burden and circumvention:
 - Password Write Threshold.

Modeling Cognitive Burden: Cognitive Thresholds

- Use Levenshtein set measure for cognitive burden!
- Cognitive burden and circumvention:
 - Password Write Threshold.
 - Password Reuse Threshold.

Results

Future Work

Conclusion

Modeling Password Beliefs

Agents have per-service password belief strengths.

Results

Conclusion

Modeling Password Beliefs

- Agents have per-service password belief strengths.
- Belief strengths collectively describe agent password memory.

Results

Conclusion

Modeling Password Beliefs

- Agents have per-service password belief strengths.
- Belief strengths collectively describe agent password memory.
- Agent actions and results affect belief strengths.

Results

Future Work

Conclusion

Measuring Password Security

Direct Attack: PDA

Results

Future Work

Conclusion

Measuring Password Security

- Direct Attack: PDA
- Stolen Password Attack: : PSP

Results

Future Work

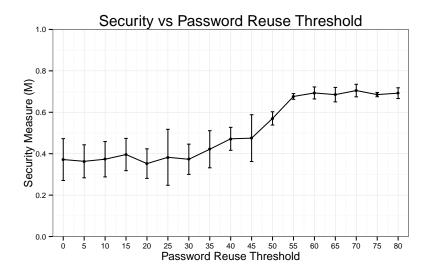
Conclusion

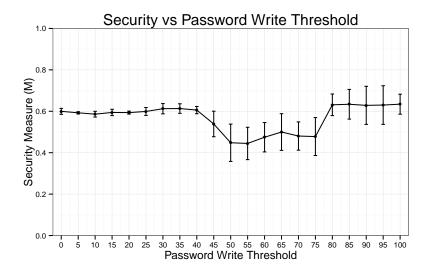
Measuring Password Security

- Direct Attack: PDA
- Stolen Password Attack: : PSP
- Password Reuse Attack: P_{RA}

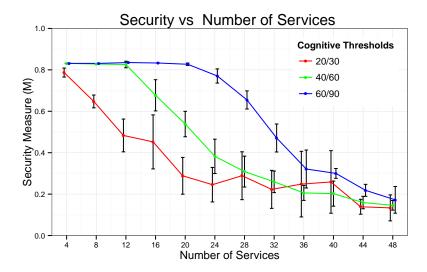
Results

Future Work


Conclusion


Measuring Password Security

- Direct Attack: PDA
- Stolen Password Attack: : PSP
- Password Reuse Attack: P_{RA}
- Aggregate Security:


$$M = P(SAFE) = (1 - P_{DA}) * (1 - P_{SP}) * (1 - P_{RA})$$

Results - Security vs Password Reuse Threshold

Results - Security vs Number of Services

Future Work

- Future Password-Related Work:
 - Other circumventions
 - Group dynamics
 - Endorsing circumventions
 - More accurate modeling
 - Validation
- Autologouts
- Other problems?

Results

Future Work

Conclusion

Conclusion

Humans circumvent.

- Humans circumvent.
- ▶ We must acknowledge and account for circumvention.

- Humans circumvent.
- ► We must acknowledge and account for circumvention.
- This necessitates better policy tools.

- Humans circumvent.
- ► We must acknowledge and account for circumvention.
- This necessitates better policy tools.
- Agent-based simulations may help.

Thank you!

Contact Information:

Vijay Kothari: vijayk@cs.dartmouth.edu Jim Blythe: blythe@isi.edu Sean Smith: sws@cs.dartmouth.edu Ross Koppel: rkoppel@sas.upenn.edu