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Cloud computing raises privacy concerns
for sensitive data

Data & 
Program

Financial
Medical
Government
etc.

Run analysis 
over the 
sensitive data
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Data & 
Program

Malicious insiders or intruders may perform 
physical attacks to snoop sensitive data

Data & 
Program

Insider Intruder

bus
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Solution 1: Secure processors encrypt memory

• e.g. Secure Processors (AEGIS, XOM, AISE-BMT), IBM Cryptographic 
Coprocessors, Intel SGX

Secure?



NO! It is easy to learn memory access 
patterns through physical attacks

• E.g. replace DRAM DIMMs with NVDIMMs that have non-
volatile storage to record accesses



Breast
cancer

Liver
problem

Kidney
problem

Secure 
processor

Problem:  Access patterns to 
even encrypted data leak 

sensitive information.



Secure 
Processor

Crypto tool: Oblivious RAM

• Hide access patterns
• Redundancy
• Data Shuffling

• Poly-logarithmic cost 
per access

𝑖𝑖

𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 log𝑁𝑁)

[Shi, et al., 2011] Oblivious RAM with O((logN)3) Worst-Case Cost. In ASIACRYPT 2011.
[Stefanov et al., 2013] Path ORAM: An extremely simple oblivious RAM protocol. In CCS 2013 
[Maas, et al., 2013] Phantom: Practical oblivious computation in a secure processor. In CCS 2013. 
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ORAM-capable Secure Processor

Phantom
Berkeley, UT, UMD

[Maas, et al., 2013] Phantom: Practical oblivious computation in a secure processor. In CCS 2013. 
[Fletcher, et al., 2015] Freecursive ORAM: [Nearly] Free Recursion and Integrity Verification for Position-based ORAM. In ASPLOS 2015

Ascend
MIT team is fabricating 
the first ORAM chipAES

PMMAC
(SHA3)

PLBPos
Map Stash

1.Somewhat practical, but still 
moderately expensive

2.Timing and termination channels leak 
information



Given a computation (C program),
what data (variables) do we place 
inside an ORAM?

Naïve answer: all of them

Key observation:
Accesses that do not depend on secret 
inputs need not be hidden



int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++; 

}
return m;

}

h[] need not be in ORAM.
Encryption suffices.

Example: FindMax



Dynamic Memory Accesses:  
Main loop in Dijkstra
for(int i=1; i<n; ++i) {

int bestj = -1;
for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

vis[bestj] = 1;
for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
dis[j] = bestdis + e[bestj][j];

}

dis[]: Not in ORAM
vis[], e[][]: Inside ORAM



What programs leak information?

Array index leaks secret variable

Secret ifs leak information 
through variables accessed 

and instructions fetched

•a[x]:=s

•1: if(s) then
•2: x:=1
•3: else
•4: y:=2

Presenter
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How can PL help here?

Our compiler automates this analysis

• Recognize code whose access patterns do not leak 
information

• Minimize the usage of ORAM

Formal security
• Memory-trace oblivious type system

[LHS-CSF 2013] Memory Trace Oblivious Program Execution, In CSF 2013, NSA Best Scientific Cybersecurity Paper 
Award
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ORAM1

ORAM𝑛𝑛

…
Insecure
DRAM

Encrypted 
RAM

Observable trace

ORAM: Bank ID

ERAM: address

DRAM: address+data



Memory Trace Obliviousness

A program 𝑃𝑃 is MTO, if for any two secret inputs 𝑥𝑥, 𝑦𝑦
Trace 𝑃𝑃, 𝑥𝑥 ≡ Trace(𝑃𝑃, 𝑦𝑦)

𝑥𝑥

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒4

…

𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒4

…

≡
𝑃𝑃

How can we design a type system for 
enforcing MTO?

Challenge: conditionals and loops

Presenter
Presentation Notes
Essentially, if the program is straightline, for example, the program doesn’t have conditionals or loops, then enforcing MTO is relatively easy.

Therefore, I’m going to focus on the most interesting cases, namely conditionals and loops.

I will not give you the formal rules, but will only illustrate the idea how it works.



Type System: Rule for If
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
5: max:=h[i]

else
6:   skip;
7: i:=i+1;
8: return max

}

fetch line 5, read i, read h, write to max

fetch line 6,  do nothing

if-guard mentions secret 
variable

⇓
both branches have 
equivalent traces
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Type System: Padding for If Rule
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
𝑏𝑏: max:=h[i]

else
𝑏𝑏:   dumm:=h[i]
7: i:=i+1;
8: return max

}

• Padding
• dumm and max in the 

same ORAM 𝑎𝑎

• Place both instructions 
(Line 5 and Line 6) in the 
same ORAM 𝑏𝑏

fetch 𝑏𝑏, read i, access h, access 𝑎𝑎
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Type System: Rule for Loops
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
5: max:=h[i]

else
6:   dumm:=h[i]
7: i:=i+1;
8: return max

}

To prevent information 
leakage through the 
number of loop 
iterations

No secret variables in 
loop guards
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Controlling leaks

Given secret H, public N
while (i < H) do S 
⇒
while (i < N) do 

if (i < H) then S else equiv(S)

equiv(S): padding instructions that produce the same trace as S

Presenter
Presentation Notes
Syntax highlight programs on slides – for all slides.



Security

• Theorem (informally): If a program P type-checks, 
then P is memory-trace oblivious

• Proof by standard PL techniques (progress and 
preservation)



Additional Challenges

• Function calls inside secret ifs
• Partially solved in our latest work [LWNHS-IEEE S&P ‘15]

• Pointers and memory allocations
• Oblivious memory allocation algorithms proposed in [WNLCSSH-

CCS ’14]

[LWNHS-IEEE S&P ‘15] ObliVM: A Programming Framework for Secure Computation, In IEEE S&P 2015
[WNLCSSH-CCS ’14] Oblivious Data Structures, In CCS 2014
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Roadmap
• So far: Memory-trace oblivious type system

• Next: Implementation on a real processor

Cryptography

Programming 
Languages

Architecture

[LHMHTS- ASPLOS 2015] GhostRider:  A Hardware-Software System for Memory Trace Oblivious 
Computation. Best Paper Award.

Presenter
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Implicit cache may make MTO programs NOT MTO
• Program

b[0] := 0
if(s) then

a[0] := 1
b[0] := 2

else
a[0] := 1
b[1000] := 2

The true branch will have
only one memory 
accesses because of the 
cache!

Challenge I: Cache Channel



Problem: previous type 
system is not aware of 

cache!

Question: How to model cache 
behavior in the type system?

If hardware has implicit caching 
behavior ⇒Very HARD to predict

Solution: hardware-compiler co-design
1) Modify hardware to expose knobs to control scratchpad
2) Explicitly model the scratchpad behavior in the type system

Presenter
Presentation Notes
Problem: previous type system is not aware of cache

Question: How to model cache behavior in the type system
If hardware has implicit caching behavior, then it will be hard to predict caching behavior

Therefore we take a hardware-compiler co-design
Modify hardware to expose knobs to software to control cache behaviors, in this case, we call the cache scratchpad
We explicitly model the cache behavior in the type system




Not Too Slow After Using Scratchpad

• Program-implemented cache using scratchpad

• 𝑦𝑦: = 𝑎𝑎[𝑖𝑖]

• Compute the block id to be 
t1 ←

𝑟𝑟𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏

• If 𝑡𝑡1 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑖𝑖𝑖𝑖 𝑘𝑘1 , then 
retrieve k1 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[𝑡𝑡1]

• Retrieve 𝑘𝑘1[𝑟𝑟𝑖𝑖 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏]

• 𝑎𝑎 is placed in ERAM, and use 
scratchpad block 𝑘𝑘1

Presenter
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Challenge II: Timing Channel
• Program

b[0] := 0
if(s) then

a[0] := 1
b[0] := 2

else
a[0] := 1
b[1000] := 2

The true branch runs faster
than the false branch, since it 
makes less ORAM accesses

Presenter
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Challenge II: Timing Channel

• Program
if(s) then

x:=y+z;
else

x:=y*z;

The true branch runs faster than 
the false branch, since 
multiplications takes longer time 
than addition

Solution: Deterministic Timing

Presenter
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Challenge III: The type system need deal with 
assembly code
• SOLUTION

• The type system keeps track of trace patterns 

• In trace patterns, instead of actual value, the type system keeps 
track of symbolic values

• To deal with branching instructions, the type system allows a 
limited form of code patterns containing branching

• only allowed in IF-code pattern and LOOP-code pattern

Presenter
Presentation Notes
Fix the animation and make it less boring


To check the MTO property of an assembly code, we design a type system. 

The type system computes the trace pattern for a given program, and checks if the trace pattern depends on secret input.

Instead of concrete values, the type system computes the symbolic values which are used in the trace pattern.

To deal with the branching instructions, the type system forces the code to use branching instructions in either a IF-code pattern or a LOOp-code pattern.



MTO for 𝐿𝐿𝑇𝑇
• 𝑦𝑦: = 𝑎𝑎[𝑥𝑥]

• 𝑎𝑎 is placed in ERAM

𝑡𝑡1 ← 𝑟𝑟𝑥𝑥 𝐝𝐝𝐝𝐝𝐝𝐝 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡1 ← 𝑡𝑡1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑎𝑎
𝑡𝑡2 ← 𝑟𝑟𝑥𝑥 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝐥𝐥𝐥𝐥𝐥𝐥 𝑘𝑘1 ← 𝐸𝐸 𝑡𝑡1
𝐥𝐥𝐥𝐥𝐥𝐥 𝑟𝑟𝑦𝑦 ← 𝑘𝑘1[𝑡𝑡2]

• Input: 𝑥𝑥 = 513 (secret input)
• Assume 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏 = 512

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝟏𝟏)

Depending on 𝒙𝒙!



MTO for 𝐿𝐿𝑇𝑇

• 𝑦𝑦: = 𝑎𝑎[𝑥𝑥]
• 𝑎𝑎 is placed in an ORAM o

𝑡𝑡1 ← 𝑟𝑟𝑥𝑥 𝐝𝐝𝐝𝐝𝐝𝐝 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡1 ← 𝑡𝑡1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑎𝑎
𝑡𝑡2 ← 𝑟𝑟𝑥𝑥 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝐥𝐥𝐥𝐥𝐥𝐥 𝑘𝑘1 ← 𝑜𝑜 𝑡𝑡1
𝐥𝐥𝐥𝐥𝐥𝐥 𝑟𝑟𝑦𝑦 ← 𝑘𝑘1[𝑡𝑡2]

• Input: 𝑥𝑥 = 513 (secret input)
• Assume 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏 = 512

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝒐𝒐

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

Memory Trace Oblivious



GhostRider: Putting it all together

Compiler

Secure Type CheckerOptimizer

Assembly Code

Formally 
Enforce MTO

Extended 
Instruction 

Set

Security guarantee

MTO⇒ �
Cache Channel

Timing Channel
Termination Channel

Secure Processor

DRAM 
Controller

…

Scratchpad

ERAM 
Controller

ORAM 1
Controller

ORAM 𝑛𝑛
Controller



Architecture Overview Joint ORAM-ERAM 
memory system

Software-controlled 
scratchpad to replace an 
implicit cacheInstructions have deterministic timings

User can ship their code and 
data securely using standard 
method.



FPGA Implementation



Compiler Implementation

C Program with
security annotation

Standard 
information-flow 
style type system 

𝑛𝑛 is public
𝑥𝑥 is secret
𝑎𝑎 is secret

Memory 
Allocation

𝑛𝑛 is in DRAM𝑎𝑎 is ORAM 𝑜𝑜

𝑥𝑥 is in ERAM

Basic Compilation
(Software Caching)

Program in 𝐿𝐿𝑇𝑇
(may not type 

check)

Padding If-
code block

Register 
Allocation

Typed 
Program 

in 𝐿𝐿𝑇𝑇

Type 
Checker

Trusted



FPGA Evaluation
up to 8.94 × faster than baseline
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Little overhead over non-secure baseline 
for some programs

For programs whose memory trace patterns heavily 
depend on the input, speedup is small
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Memory-trace oblivious compiler + GhostRider
processor enable 
practical outsourcing secure against physical attacks

• The work continues:  relaxed adversary model, support larger programs

Cryptography

Programming 
Languages

Architecture



Other Applications of Trace Obliviousness

ObliVM: Trace Oblivious Program Execution for 
Secure Computation
• www.oblivm.com
• [LHSKH-IEEE S&P ‘14, LWNHS-IEEE S&P ’15]

More in progress

[LHSKH-IEEE S&P ’14] Automating RAM-model Secure Computation, In IEEE S&P 2014
[LWNHS-IEEE S&P ‘15] ObliVM: A Programming Framework for Secure Computation, In IEEE S&P 2015

http://www.oblivm.com/


Success Story: PUF 13 Years Ago
MIT, 2002, Devadas et al.
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Success Story: PUF Today



ORAM-capable 
secure processor 

today 
Looks like this

Where will ORAM be in 2028?
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