
Memory Trace Oblivious Program Execution
for Cloud Computing

Chang Liu

Three great tastes that go great together

Combining PL, Crypto, Architecture Research

With Michael Hicks, Elaine Shi,
Austin Harris, Martin Maas, and Mohit Tiwari

Presenter
Presentation Notes
Put UT and Berkeley Logo

Cloud computing raises privacy concerns
for sensitive data

Data &
Program

Financial
Medical
Government
etc.

Run analysis
over the
sensitive data

Presenter
Presentation Notes
Nowaday, people rely on Cloud services to store data and run programs. But users have to pay the cost of giving up the control to their privacy. When the cloud provider is benign, everything is good.

Data &
Program

Malicious insiders or intruders may perform
physical attacks to snoop sensitive data

Data &
Program

Insider Intruder

bus

Presenter
Presentation Notes
Change adversary icon if possible

Solution 1: Secure processors encrypt memory

• e.g. Secure Processors (AEGIS, XOM, AISE-BMT), IBM Cryptographic
Coprocessors, Intel SGX

Secure?

NO! It is easy to learn memory access
patterns through physical attacks

• E.g. replace DRAM DIMMs with NVDIMMs that have non-
volatile storage to record accesses

Breast
cancer

Liver
problem

Kidney
problem

Secure
processor

Problem: Access patterns to
even encrypted data leak

sensitive information.

Secure
Processor

Crypto tool: Oblivious RAM

• Hide access patterns
• Redundancy
• Data Shuffling

• Poly-logarithmic cost
per access

𝑖𝑖

𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 log𝑁𝑁)

[Shi, et al., 2011] Oblivious RAM with O((logN)3) Worst-Case Cost. In ASIACRYPT 2011.
[Stefanov et al., 2013] Path ORAM: An extremely simple oblivious RAM protocol. In CCS 2013
[Maas, et al., 2013] Phantom: Practical oblivious computation in a secure processor. In CCS 2013.

O
R
A
M

S
c
h
e
m
e

R
e
a
d
M
[
i
]

[𝑖𝑖]

[𝑀𝑀[𝑖𝑖]]

ORAM-capable Secure Processor

Phantom
Berkeley, UT, UMD

[Maas, et al., 2013] Phantom: Practical oblivious computation in a secure processor. In CCS 2013.
[Fletcher, et al., 2015] Freecursive ORAM: [Nearly] Free Recursion and Integrity Verification for Position-based ORAM. In ASPLOS 2015

Ascend
MIT team is fabricating
the first ORAM chipAES

PMMAC
(SHA3)

PLBPos
Map Stash

1.Somewhat practical, but still
moderately expensive

2.Timing and termination channels leak
information

Given a computation (C program),
what data (variables) do we place
inside an ORAM?

Naïve answer: all of them

Key observation:
Accesses that do not depend on secret
inputs need not be hidden

int max(public int n, secret int h[]) {
public int i = 0;
secret int m = 0;
while (i < n) {

if (h[i] > m) then m = h[i];
i++;

}
return m;

}

h[] need not be in ORAM.
Encryption suffices.

Example: FindMax

Dynamic Memory Accesses:
Main loop in Dijkstra
for(int i=1; i<n; ++i) {

int bestj = -1;
for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis < 0 || dis[j] < bestdis))
bestdis = dis[j];

vis[bestj] = 1;
for(int j=0; j<n; ++j)

if(!vis[j] && (bestdis + e[bestj][j] < dis[j]))
dis[j] = bestdis + e[bestj][j];

}

dis[]: Not in ORAM
vis[], e[][]: Inside ORAM

What programs leak information?

Array index leaks secret variable

Secret ifs leak information
through variables accessed

and instructions fetched

•a[x]:=s

•1: if(s) then
•2: x:=1
•3: else
•4: y:=2

Presenter
Presentation Notes
Mention C program

How can PL help here?

Our compiler automates this analysis

• Recognize code whose access patterns do not leak
information

• Minimize the usage of ORAM

Formal security
• Memory-trace oblivious type system

[LHS-CSF 2013] Memory Trace Oblivious Program Execution, In CSF 2013, NSA Best Scientific Cybersecurity Paper
Award

Hybrid Architecture
Se

cu
re

Pr
oc

es
so

r

O
R

A
M

 C
on

tr
ol

le
r

Memory

ORAM1

ORAM𝑛𝑛

…
Insecure
DRAM

Encrypted
RAM

Observable trace

ORAM: Bank ID

ERAM: address

DRAM: address+data

Memory Trace Obliviousness

A program 𝑃𝑃 is MTO, if for any two secret inputs 𝑥𝑥, 𝑦𝑦
Trace 𝑃𝑃, 𝑥𝑥 ≡ Trace(𝑃𝑃, 𝑦𝑦)

𝑥𝑥

𝑃𝑃 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒4

…

𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒4

…

≡
𝑃𝑃

How can we design a type system for
enforcing MTO?

Challenge: conditionals and loops

Presenter
Presentation Notes
Essentially, if the program is straightline, for example, the program doesn’t have conditionals or loops, then enforcing MTO is relatively easy.

Therefore, I’m going to focus on the most interesting cases, namely conditionals and loops.

I will not give you the formal rules, but will only illustrate the idea how it works.

Type System: Rule for If
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
5: max:=h[i]

else
6: skip;
7: i:=i+1;
8: return max

}

fetch line 5, read i, read h, write to max

fetch line 6, do nothing

if-guard mentions secret
variable

⇓
both branches have
equivalent traces

Presenter
Presentation Notes
Put 4-6 to a colorful box

Type System: Padding for If Rule
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
𝑏𝑏: max:=h[i]

else
𝑏𝑏: dumm:=h[i]
7: i:=i+1;
8: return max

}

• Padding
• dumm and max in the

same ORAM 𝑎𝑎

• Place both instructions
(Line 5 and Line 6) in the
same ORAM 𝑏𝑏

fetch 𝑏𝑏, read i, access h, access 𝑎𝑎

Presenter
Presentation Notes
Put 4-6 to a colorful box

Type System: Rule for Loops
int findmax(public int n, secret int[] h) {
1: max:=h[0];
2: i:=1;
3: while(i<n)
4: if(h[i]>max) then
5: max:=h[i]

else
6: dumm:=h[i]
7: i:=i+1;
8: return max

}

To prevent information
leakage through the
number of loop
iterations

No secret variables in
loop guards

Presenter
Presentation Notes
Put it in the box

Controlling leaks

Given secret H, public N
while (i < H) do S
⇒
while (i < N) do

if (i < H) then S else equiv(S)

equiv(S): padding instructions that produce the same trace as S

Presenter
Presentation Notes
Syntax highlight programs on slides – for all slides.

Security

• Theorem (informally): If a program P type-checks,
then P is memory-trace oblivious

• Proof by standard PL techniques (progress and
preservation)

Additional Challenges

• Function calls inside secret ifs
• Partially solved in our latest work [LWNHS-IEEE S&P ‘15]

• Pointers and memory allocations
• Oblivious memory allocation algorithms proposed in [WNLCSSH-

CCS ’14]

[LWNHS-IEEE S&P ‘15] ObliVM: A Programming Framework for Secure Computation, In IEEE S&P 2015
[WNLCSSH-CCS ’14] Oblivious Data Structures, In CCS 2014

Presenter
Presentation Notes
Change citation

Roadmap
• So far: Memory-trace oblivious type system

• Next: Implementation on a real processor

Cryptography

Programming
Languages

Architecture

[LHMHTS- ASPLOS 2015] GhostRider: A Hardware-Software System for Memory Trace Oblivious
Computation. Best Paper Award.

Presenter
Presentation Notes
Fix the animation

Adjust the citation as you wish

Implicit cache may make MTO programs NOT MTO
• Program

b[0] := 0
if(s) then

a[0] := 1
b[0] := 2

else
a[0] := 1
b[1000] := 2

The true branch will have
only one memory
accesses because of the
cache!

Challenge I: Cache Channel

Problem: previous type
system is not aware of

cache!

Question: How to model cache
behavior in the type system?

If hardware has implicit caching
behavior ⇒Very HARD to predict

Solution: hardware-compiler co-design
1) Modify hardware to expose knobs to control scratchpad
2) Explicitly model the scratchpad behavior in the type system

Presenter
Presentation Notes
Problem: previous type system is not aware of cache

Question: How to model cache behavior in the type system
If hardware has implicit caching behavior, then it will be hard to predict caching behavior

Therefore we take a hardware-compiler co-design
Modify hardware to expose knobs to software to control cache behaviors, in this case, we call the cache scratchpad
We explicitly model the cache behavior in the type system

Not Too Slow After Using Scratchpad

• Program-implemented cache using scratchpad

• 𝑦𝑦: = 𝑎𝑎[𝑖𝑖]

• Compute the block id to be
t1 ←

𝑟𝑟𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏

• If 𝑡𝑡1 = 𝑏𝑏𝑏𝑏𝑘𝑘𝑖𝑖𝑖𝑖 𝑘𝑘1 , then
retrieve k1 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[𝑡𝑡1]

• Retrieve 𝑘𝑘1[𝑟𝑟𝑖𝑖 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏]

• 𝑎𝑎 is placed in ERAM, and use
scratchpad block 𝑘𝑘1

Presenter
Presentation Notes
Add cache example

Challenge II: Timing Channel
• Program

b[0] := 0
if(s) then

a[0] := 1
b[0] := 2

else
a[0] := 1
b[1000] := 2

The true branch runs faster
than the false branch, since it
makes less ORAM accesses

Presenter
Presentation Notes
Make it the orange box

Challenge II: Timing Channel

• Program
if(s) then

x:=y+z;
else

x:=y*z;

The true branch runs faster than
the false branch, since
multiplications takes longer time
than addition

Solution: Deterministic Timing

Presenter
Presentation Notes
Make it the orange box

Challenge III: The type system need deal with
assembly code
• SOLUTION

• The type system keeps track of trace patterns

• In trace patterns, instead of actual value, the type system keeps
track of symbolic values

• To deal with branching instructions, the type system allows a
limited form of code patterns containing branching

• only allowed in IF-code pattern and LOOP-code pattern

Presenter
Presentation Notes
Fix the animation and make it less boring

To check the MTO property of an assembly code, we design a type system.

The type system computes the trace pattern for a given program, and checks if the trace pattern depends on secret input.

Instead of concrete values, the type system computes the symbolic values which are used in the trace pattern.

To deal with the branching instructions, the type system forces the code to use branching instructions in either a IF-code pattern or a LOOp-code pattern.

MTO for 𝐿𝐿𝑇𝑇
• 𝑦𝑦: = 𝑎𝑎[𝑥𝑥]

• 𝑎𝑎 is placed in ERAM

𝑡𝑡1 ← 𝑟𝑟𝑥𝑥 𝐝𝐝𝐝𝐝𝐝𝐝 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡1 ← 𝑡𝑡1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑎𝑎
𝑡𝑡2 ← 𝑟𝑟𝑥𝑥 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝐥𝐥𝐥𝐥𝐥𝐥 𝑘𝑘1 ← 𝐸𝐸 𝑡𝑡1
𝐥𝐥𝐥𝐥𝐥𝐥 𝑟𝑟𝑦𝑦 ← 𝑘𝑘1[𝑡𝑡2]

• Input: 𝑥𝑥 = 513 (secret input)
• Assume 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏 = 512

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞(𝟏𝟏)

Depending on 𝒙𝒙!

MTO for 𝐿𝐿𝑇𝑇

• 𝑦𝑦: = 𝑎𝑎[𝑥𝑥]
• 𝑎𝑎 is placed in an ORAM o

𝑡𝑡1 ← 𝑟𝑟𝑥𝑥 𝐝𝐝𝐝𝐝𝐝𝐝 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝑡𝑡1 ← 𝑡𝑡1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑎𝑎
𝑡𝑡2 ← 𝑟𝑟𝑥𝑥 𝐦𝐦𝐦𝐦𝐦𝐦 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏
𝐥𝐥𝐥𝐥𝐥𝐥 𝑘𝑘1 ← 𝑜𝑜 𝑡𝑡1
𝐥𝐥𝐥𝐥𝐥𝐥 𝑟𝑟𝑦𝑦 ← 𝑘𝑘1[𝑡𝑡2]

• Input: 𝑥𝑥 = 513 (secret input)
• Assume 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏 = 512

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟
𝒐𝒐

𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

Memory Trace Oblivious

GhostRider: Putting it all together

Compiler

Secure Type CheckerOptimizer

Assembly Code

Formally
Enforce MTO

Extended
Instruction

Set

Security guarantee

MTO⇒ �
Cache Channel

Timing Channel
Termination Channel

Secure Processor

DRAM
Controller

…

Scratchpad

ERAM
Controller

ORAM 1
Controller

ORAM 𝑛𝑛
Controller

Architecture Overview Joint ORAM-ERAM
memory system

Software-controlled
scratchpad to replace an
implicit cacheInstructions have deterministic timings

User can ship their code and
data securely using standard
method.

FPGA Implementation

Compiler Implementation

C Program with
security annotation

Standard
information-flow
style type system

𝑛𝑛 is public
𝑥𝑥 is secret
𝑎𝑎 is secret

Memory
Allocation

𝑛𝑛 is in DRAM𝑎𝑎 is ORAM 𝑜𝑜

𝑥𝑥 is in ERAM

Basic Compilation
(Software Caching)

Program in 𝐿𝐿𝑇𝑇
(may not type

check)

Padding If-
code block

Register
Allocation

Typed
Program

in 𝐿𝐿𝑇𝑇

Type
Checker

Trusted

FPGA Evaluation
up to 8.94 × faster than baseline

Sl
ow

do
w

n
w

.r.
t.

no
n-

se
cu

re
 b

as
el

in
e

Little overhead over non-secure baseline
for some programs

For programs whose memory trace patterns heavily
depend on the input, speedup is small

Presenter
Presentation Notes
Explicit mark y access
Animate

Memory-trace oblivious compiler + GhostRider
processor enable
practical outsourcing secure against physical attacks

• The work continues: relaxed adversary model, support larger programs

Cryptography

Programming
Languages

Architecture

Other Applications of Trace Obliviousness

ObliVM: Trace Oblivious Program Execution for
Secure Computation
• www.oblivm.com
• [LHSKH-IEEE S&P ‘14, LWNHS-IEEE S&P ’15]

More in progress

[LHSKH-IEEE S&P ’14] Automating RAM-model Secure Computation, In IEEE S&P 2014
[LWNHS-IEEE S&P ‘15] ObliVM: A Programming Framework for Secure Computation, In IEEE S&P 2015

http://www.oblivm.com/

Success Story: PUF 13 Years Ago
MIT, 2002, Devadas et al.

Presenter
Presentation Notes
center align

Success Story: PUF Today

ORAM-capable
secure processor

today
Looks like this

Where will ORAM be in 2028?

	Memory Trace Oblivious Program Execution for Cloud Computing
	Cloud computing raises privacy concerns for sensitive data
	Slide Number 3
	Solution 1: Secure processors encrypt memory
	NO! It is easy to learn memory access patterns through physical attacks
	Slide Number 6
	Crypto tool: Oblivious RAM
	ORAM-capable Secure Processor
	Slide Number 9
	Example: FindMax
	Dynamic Memory Accesses: �Main loop in Dijkstra
	Slide Number 12
	How can PL help here?
	Hybrid Architecture
	Memory Trace Obliviousness
	Type System: Rule for If
	Type System: Padding for If Rule
	Type System: Rule for Loops
	Controlling leaks
	Security
	Additional Challenges
	Roadmap
	Implicit cache may make MTO programs NOT MTO
	Slide Number 24
	Not Too Slow After Using Scratchpad
	Slide Number 26
	Slide Number 27
	Challenge III: The type system need deal with assembly code
	MTO for 𝐿 𝑇
	MTO for 𝐿 𝑇
	GhostRider: Putting it all together
	Architecture Overview
	FPGA Implementation
	Compiler Implementation
	FPGA Evaluation�up to 8.94× faster than baseline
	Memory-trace oblivious compiler + GhostRider processor enable �practical outsourcing secure against physical attacks
	Other Applications of Trace Obliviousness
	Success Story: PUF 13 Years Ago
	Success Story: PUF Today
	Slide Number 40

