

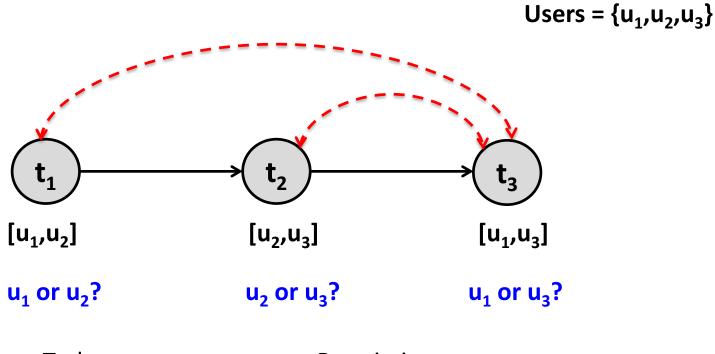
Modelling User Availability in Workflow Resiliency Analysis

John C. Mace, Charles Morisset & Aad van Moorsel

School of Computing Science

Newcastle University, UK

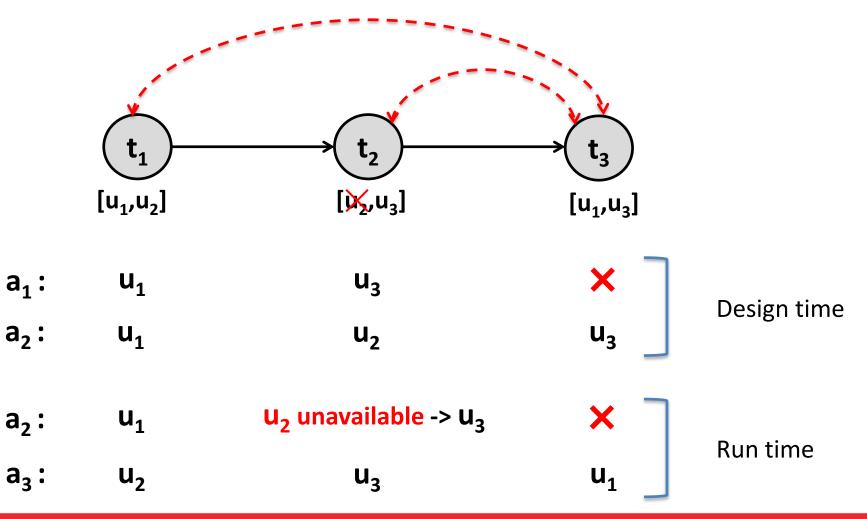
21 April 2015



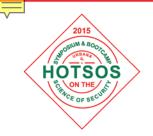
Take Home Message

- Automatically calculate the **resiliency** of a workflow
 - Resiliency is a measure of success rate for a workflow executed by users who may become unavailable at runtime
 - Resiliency indicates risk of: workflow failure, security policy violation
 - Resiliency informs: mitigation strategy, redesign, recruitment, etc.
- Runtime user **availability** can be modelled in several ways when calculating resiliency
- Availability model choice can **impact** the resiliency calculated for the same workflow
 - Large resiliency variance
 - Also impacts on complexity, e.g., computation time

Workflow



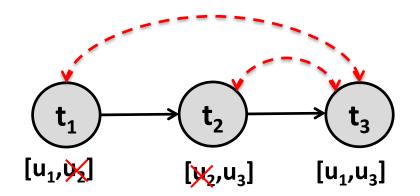
- Tasks
- Ordering
- Users


- Permissions
- Constraints
- Assignment?

Workflow Satisfiability Problem



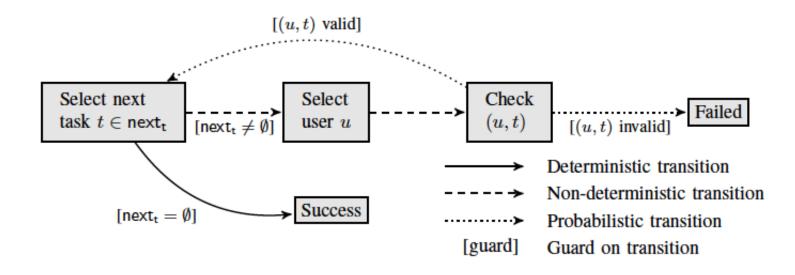
The Science of Security initiative is funded by the National Security Agency.


Workflow Resiliency

- **k** = **1**, **10** possible cases of up to **1** unavailable user
- 1 example case u₂ unavailable at t₁

Workflow \mathbf{w}_1

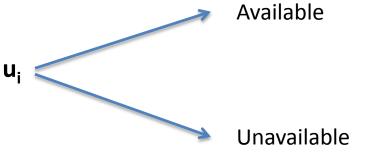
- **0** resiliency -> *current*
- w₁ : assign 4 of 10 cases -> new



Workflow $\mathbf{w}_2 - \mathbf{u}_2$ added to \mathbf{t}_2

- **0** resiliency -> *current*
- w₂ : assign 9 of 10 cases -> new

Assignment Process



- Maximise *v* returned by value function of a Markov Decision Process (**MDP**)
- WSP -> full user availability
 - can Success be reached?
 - v = 0 or 1

- **Resiliency** -> probabilistic user availability
 - maximum probability of reaching Success?

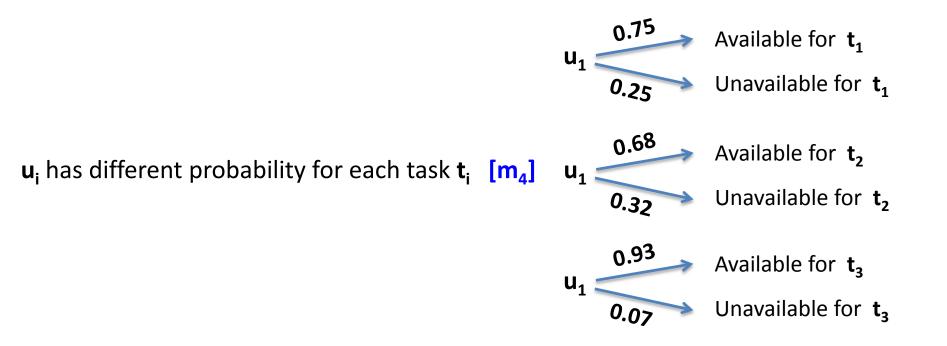
$$- 0 \ge v \le 1$$

- **Static model** make choice before start of workflow
- **Decremental model** make choice for each task while **u**_i is available
- **Dynamic model** make choice for each task [m₁]

Bounded Availability

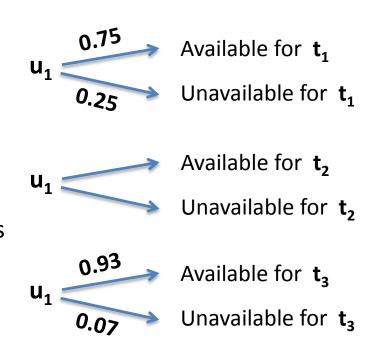
- Up to *k* users can become unavailable across entire workflow
- For **k** = 1, consider all possible cases
 - Assume decremental availability
 - Assume cases are equiprobable

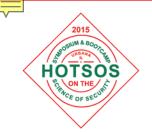
	t ₁	t ₂	t ₃
All users available	u ₁ ,u ₂ ,u ₃	u ₁ ,u ₂ ,u ₃	u ₁ ,u ₂ ,u ₃
${f u_1}$ unavailable at ${f t_3}$	u ₁ ,u ₂ ,u ₃	u ₁ ,u ₂ ,u ₃	u ₂ ,u ₃
u_2 unavailable at t_2	u ₁ ,u ₂ ,u ₃	u ₁ ,u ₃	u ₁ ,u ₃
${f u_3}$ unavailable at ${f t_1}$	u ₁ ,u ₂	u ₁ ,u ₂	u ₁ ,u ₂


... and so on for every possible case [m₂]

Probabilistic Availability

 \mathbf{u}_{i} has same probability for each task \mathbf{t}_{i} [\mathbf{m}_{3}]

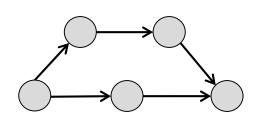




Combined Models

- Combine both non-deterministic and probabilistic availability
 - Non-deterministic for t_2
 - Probabilistic for t₁ and t₃
- More complex, dependent availability models can be considered, e.g.
 - Current availability
 - Availability for previous tasks
 - Availability of other users

Calculating Resiliency


- Solve **MDP** to find *v* using model checker **PRISM**¹
- Model consists of interactive named modules containing:
 - Variables *name* : *type* **init** *value*
 - Commands [label] guard $\rightarrow p_1$: update₁ & ... & p_n : update_n
- Non-deterministic choice
 - $[label_i]$ guard_i -> update₁
 - $[label_i]$ guard_i -> update₂
- Satisfiability property
 - Pmax =? [F (t=-1) & (!fail)]

¹ http://www.prismmodelchecker.org/

Resiliency Analysis

Model	Res	States	Transitions	Build time (s)	Verify time (s)	File size (KB)	Size on disk (KB)
[m ₁]	1.00	8530	31321	0.219	0.015	2.51	4.00
[m ₂]	0.43	50489	64377	0.125	0.172	8.95	12.00
[m ₃]	0.41	8530	31321	0.172	0.016	2.50	4.00
[m ₄]	0.79	8530	31321	0.172	0.016	3.21	4.00

[m₁] : dynamic, non-deterministic

[m₂] : decremental, bounded (k=2), equiprobable

[m₃] : dynamic, probabilistic (same per task)

[m₄] : dynamic, probabilistic (different per task)

Conclusion

- We can encode a workflow with a user availability model as a Markov Decision Processes (**MDP**)
- Used the model checker **PRISM** to automatically solve an **MDP** and provide measure of workflow success rate, or resiliency
- Shown user availability in workflows can be modelled in several ways
 - Probabilistic, non-deterministic, bounded, etc.
- Highlighted availability model choice can have an impact on resiliency computations for the same workflow
- We make no assumption on which one is best as this will be context dependent

Future Work

- Analyse different sizes of workflow
 - How does computing resiliency scale?
 - How do complexity metrics change?
- More complex security policies
 - Cardinality constraints
- Development of tools and methodologies for workflow designers
 - Understand what is an appropriate availability model?
 - Automatically calculate appropriate resiliency

References

- J. Crampton, G. Gutin, and A. Yeo. On the parameterized complexity of the workflow satisfiability problem. In *Proceedings* CCS '12, pages 857-868, New York, NY, USA, 2012. ACM.
- Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization systems. *ACM Trans. Inf. Syst. Secur.*, 13(4):40:1-40:35, Dec. 2010.
- J. Mace, C. Morisset, and A. van Moorsel. Quantitative Workflow Resiliency. In *Computer Security ESORICS 2014*, volume 8712 of LNCS, pages 344-361. Springer, 2014.
- M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In Proceedings CAV'11, volume 6806 of LNCS, pages 585-591. Springer, 2011.

Contact : john.mace@ncl.ac.uk