
Neutralizing Manipulation of 
Critical Data by Enforcing 

Data-Instruction Dependency

Chandra Sharma
Nathan Miller
George Amariucai



Introduction

• A program encapsulates several critical data
– Influential in determining the control flow of a program

• Manipulation of the critical data:
– Allows access to locked software features
– May even allow full system access

• Imperative to protect such data from illicit modification



Background

• One class of critical data that is often subject to malicious 
manipulation: the return address of a function
– Part of the activation record saved on the stack
– Determines program control flow
– Primary subject of stack-smashing attacks

• Manipulation of the return address allows diversion of 
program control



Existing Measures
• Mostly based on either randomization of an address/pointer parameter or secrecy of 

some random value/key
– ASLR, ASLP, ILR

• Based on randomization of addresses
• Vulnerable to memory disclosure

– StackGuard
• Relies on the secrecy of canary
• Vulnerable to buffer-overread, canary bypass

– Instruction Set Randomization
• Randomizes the entire instruction set
• High overhead
• Vulnerable to chosen-key attacks, code-reuse attacks

– Return Address Defender
• Uses parallel stacks
• Robust but less versatile



Data-Instruction Dependency
• Does not rely on randomization 
• Does not rely on a secret value/key
• Centered around the notion of critical instructions
– Instructions that determine continuation/ termination of a program

• Critical instructions are used as a trap against illicit 
modification of critical data



RAID
• Set up a dependency between the return address and some 

sequence of instructions
• Goal: 
– Execution of the instructions succeeds if the return address is intact
– Execution fails otherwise



Example
add:
push ebp
mov ebp, esp
sub esp, 4
mov edx, DWORD PTR 8[ebp]
mov eax, DWORD PTR 12[ebp]
add eax, edx
mov DWORD PTR -4[ebp], eax
mov eax, DWORD PTR -4[ebp]
leave
ret

int add(int x, int y) 
{
int result = x+y;
return result;

}

int main() 
{
int sum = add(10,20);
return 0;

}



Implementation

• Encode a sequence of (critical) instructions at the start of a 
function with the return address

• Decode right before the function returns and execute the 
decoded sequence

• If the return address is tampered with between the encoding 
and decoding steps, the execution fails resulting in a program 
crash

• Successful execution of critical instructions preserve program 
semantics



Code Stack

• Allocate a separate stack space, a code stack, for critical 
instructions
– Each function is allocated a frame in the code stack

• Encoding and decoding operations are performed in the code 
stack

• Critical instructions are copied to the code stack at the start of 
the function’s (modified) prologue



Example
add:

push ebp
mov ebp, esp
sub esp, 4
mov edx, DWORD PTR 8[ebp]
mov eax, DWORD PTR 12[ebp]
add eax, edx
mov DWORD PTR -4[ebp], eax
mov eax, DWORD PTR -4[ebp]
leave
ret

add:
* Encode the ret instruction
* Copy to the code stack
push ebp
mov ebp, esp
sub esp, 4
mov edx, DWORD PTR 8[ebp]
mov eax, DWORD PTR 12[ebp]
add eax, edx
mov DWORD PTR -4[ebp], eax
mov eax, DWORD PTR -4[ebp]
leave
* Decode the ret instruction
* Jump to the code stack

Original: Modified:



Code Stack Illustration
F4 F4 F4 F4

F4 F4 F4 ...

E7 F4 F4 F4

F4 F4 F4 ...

Fig. 1: Code stack right before the
execution of the modified prologue

Fig. 2: Code stack right after the
execution of the modified prologue

B3 F4 F4 F4

F4 F4 F4 ...

C3 F4 F4 F4

F4 F4 F4 ...

Fig. 3: Code stack resulting from
incorrectly decoded ret instruction

Fig. 4: Code stack resulting from
correctly decoded ret instruction

mov bl, 0xF4 ret



03 F4
F4
...

add esi, esp
hlt
...

83 F4 F4
F4
...

xor esp, 0xFFFFFFF4
hlt
...

13 F4
F4
...

adc esi, esp
hlt
...

93
F4
...

xchg ebx, eax
hlt
...

23 F4
F4
...

and esi, esp
hlt
...

A3 F4 F4 F4 F4
F4
...

mov ds:0xF4F4F4F4, eax
hlt
...

33 F4
F4
...

xor esi, esp
hlt
...

B3 F4
F4
...

mov bl, 0xF4
hlt
...

43
F4
...

inc ebx
hlt
...

C3
...

ret
...

53
F4
...

push ebx
hlt
...

D3
F4
...

invalid opcode
hlt
...

63 F4
F4
...

arpl sp, si
hlt
...

E3 F4
F4
...

jecxz -10
hlt
...

73 F4
F4
...

jae -10
hlt
...

F3 F4
...

repz hlt
...

Fig. 5: A list of all possibilities when the high nibble of the 
ret instruction is decoded



leave

• Precedes the ret instruction

• Releases the stack frame just before the function returns

• Positions the esp register to the saved return address



C0 C3 F4
F4
...

rol bl, 0xF4
hlt
...

C8 C3 F4 F4
F4
...

enter 0xF4C3, 0xF4
hlt
...

C1 C3 F4
F4
...

rol ebx, 0xF4
hlt
...

C9
C3
...

leave
ret
...

C2 C3 F4
...

ret 0xF4C3
...

CA C3 F4
...

retf 0xF4C3
...

C3
...

ret
...

CB
...

retf
...

C4
...

invalid opcode
...

CC
C3
...

int 3
ret
...

C5
...

invalid opcode
...

CD C3
F4
...

int 0x03
hlt
...

C6 C3 F4
F4
...

mov bl, 0xF4
hlt
...

CE
C3
...

into
ret
...

C7 C3 F4 F4 F4 F4
F4
...

mov ebx, 0xF4F4F4F4
hlt
...

CF
...

iret
...

Fig. 9: A list of some possibilities when the low nibble of 
the leave instruction is decoded



Fabricating Critical Instructions

• The leave and ret instructions constitute the epilogue of a 
function

• More instructions are needed for a complete dependency
• Introduce new instructions that do not break the semantics of 

the program



add:
…
sub esp, someOffset
push ebp
mov ebp, esp
mov esp, 0
inc ebp
dec ebp
leave
leave
ret

An Example

add:
…
leave
ret

Original function epilogue: Modified function epilogue:



40
C9
C9
...

inc eax
leave
leave
...

48
C9
C9
...

dec eax
leave
leave
...

44
C9
C9
...

inc esp
leave
leave
...

4C
C9
C9
...

dec esp
leave
leave
...

41
C9
C9
...

inc ecx
leave
leave
...

49
C9
C9
...

dec ecx
leave
leave
...

45
C9
C9
...

inc ebp
leave
leave
...

4D
C9
C9
...

dec ebp
leave
leave
...

42
C9
C9
...

inc edx
leave
leave
...

4A
C9
C9
...

dec edx
leave
leave
...

46
C9
C9
...

inc esi
leave
leave
...

4E
C9
C9
...

dec esi
leave
leave
...

43
C9
C9
...

inc ebx
leave
leave
...

4B
C9
C9
...

dec ebx
leave
leave
...

47
C9
C9
...

inc edi
leave
leave
...

4F
C9
C9
...

dec edi
leave
leave
...

Fig. 10: A list of some possibilities when the low nibble of the dec ebp
instruction is encoded/decoded



ucc_RAID

• Unoptimized prototype compiler implementing RAID
• Splits the program’s stack into two partitions
– Regular Stack
– Code Stack
• Located at offset 0x10000 from the regular stack

• Incurs negligible compile-time overhead
• Does incur notable run-time overhead
– Can be significantly reduced with operating system support



Thank You

• Contact us at:
v Chandra Sharma: ch1ndra@ksu.edu
v Nathan Miller: nathan232@ksu.edu
v George Amariucai: amariucai@ksu.edu

mailto:ch1ndra@ksu.edu

