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Problem: How to invest in security?

Although security is important, firms fail to protect systems
because they

I underestimate their exposure

I lack incentives

I ignore the cost/benefit of security

I firms do not know the best way to protect a system



Related works
Previous work on increasing security investments:

Interdependences: Deal with the negative effects of networked
systems, which create cooperation problems.

Cyber-Insurance: Tool that might give incentives to invest in
protection.

How can we protect systems?1

1New York State Department of Financial Services: Report on Cyber
Security in the Insurance Sector, Feb. 2015, url: http:

//www.dfs.ny.gov/reportpub/dfs_cyber_insurance_report_022015.pdf.

http://www.dfs.ny.gov/reportpub/dfs_cyber_insurance_report_022015.pdf
http://www.dfs.ny.gov/reportpub/dfs_cyber_insurance_report_022015.pdf


Objective: Investigate the best investment strategy to
protect a system

We propose a model of the interactions between a defender and an
attacker where

Defender invest in two technologies
I Prevention
I Detection

Attacker invest its resources in
I Finding vulnerabilities
I Attacking the system

Questions:

How does the attacker’s strategy change as a function of the
defense strategy?

How does the defense strategy change with limited resources?
With limited information?
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Players

Attacker

Objective Maximize its profit attacking firms (e.g., stealing
information)

Actions I Find bugs (hack the system) vh ∈ [0, 1]
I Exploit bugs ve ∈ [0, 1]

Defender

Objective Minimize operation costs of a system. Balance
between costs of attacks and cost of protection

Actions I Prevent bugs in the system vp ∈ [0, 1] (e.g.,
secure code development)

I Detect attacks and correct failures vd ∈ [0, 1]
(e.g., IDS)

The cost of each player is affected by the decisions of the adversary.



Security Model

Players’ actions affect the
security of the system.

We model the dynamic
change in security with

a Markov process.

The players make
decisions under uncer-
tainties that optimize

their performance.

The decision of each
player is formulated as
a problem of stochastic
dynamic programming.

Problems of stochastic dynamic programming2 involve solving
iteratively a Bellman equation that describes the conditions of
optimal decisions.

2Alain Bensoussan: Dynamic programming and inventory control, vol. 3
(Studies in Probability, Optimization and Statistics), 2011;
Onésimo Hernández-Lerma/Jean B Lasserre: Discrete-time Markov control
processes: basic optimality criteria, vol. 30, 2012.



System’s Security as a Markov Decision Process

Vulnerable state S0

An adversary can exploit a
vulnerability.

Secure state S1

The adversary must search a
vulnerability to attack.

S0 S1

π(ve , vd)

1− π(ve , vd)

δ(vh, vp)

1− δ(vh, vp)

In the state S0

Attacker
Gains: ga(ve)
Cost: C0

lA = −ga(ve) + C0

Defender
Loses: gd(ve)
Cost: Cd(vd) + Cp(vp)
lD = gd(ve) + Cd(vd) + Cp(vp)

The defender detects the attack with probability π(ve , vd), which
increases with ve and vd



System’s Security as a Markov Decision Process
Vulnerable state S0

An adversary can exploit a
vulnerability.

Secure state S1

The adversary must search a
vulnerability to attack.

S0 S1

π(ve , vd)

1− π(ve , vd)

δ(vh, vp)

1− δ(vh, vp)

In the state S1

Attacker
Gains: 0
Cost: Cv

lA = Cv

Defender
Loses: 0
Cost = Cd(vd) + Cp(vp)
lD = Cd(vd) + Cp(vp)

The attacker finds a vulnerability with probability δ(vh, vp).
I increases with the effort of the attacker vh.
I decreases with the effort of the defender vp.
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Attacker’s Discounted Payoff

S1 S1 S1 S1 S1

S0 S0 S0 S0 S0

x0 x1 x2 x3 x4

S0

S1 S1

S0

S1

The discounted payoff of the attacker with the attack and defense
strategies vA = (ve , vh) and vD = (vd , vp) is

JA(x0, vA, vD) = lA(x0, vA)+

βEvA,vD
x0 {lA(x1, vA)+

βEvA,vD
x1 {lA(x2, vA)+

βEvA,vD
x2 {lA(x3, vA)+

...

+ βEvA,vD
xn−1
{lA(xn, vA) + . . .}}}}

The discount factor β relates future costs with the present.



Attacker’s Discounted Payoff

We consider an infinite horizon problem in which the attacker
wants to find the best attack strategy vA. The cost functional can
be written as

JA(x0, vA, vD) =

Present Cost︷ ︸︸ ︷
lA(x0, vA) +β

Future Cost︷ ︸︸ ︷
EvA,vD
x0 {JA(x1, vA, vD)},

where x0 is the initial state.
The minimum cost is given by the Bellman equation

uA(x0, vD) = min
vA

JA(x0, vA, vD) =

min
vA

{
lA(x0, vA) + βEvA,vD

x0

{
uA(x0, vD)

}}
The optimal attack strategy v∗A satisfies

uA(x0, vD) = JA(x0, v
∗
A, vD)



Optimal Attack strategy: Procedure

1. Show that the cost functional is a contraction mapping

2. From the Banach Fixed point theorem we can approximate
the cost functional as

un+1(x , vd) = inf
vn∈[0,1]

{lA(x , vn) + βEvn,vD
x {un(x , vd)}} ,

where un(x , vd)→ u(x , vd) as n→∞.

3. We can analyze the optimal actions of the attacker with the
approximated function.



Optimal Attack strategy

Theorem: Optimal strategy of the attacker

1. va = 0 and vh = 0 if K > 0,

2. va = 1 and vh = 0 if K < 0 and B > 0,

3. va = 1 and vh = 1 if K < 0 and B < 0,

where

K = C0 − ga(1)︸ ︷︷ ︸
Independent of vD

, B = Cv + β
K

1 + βπ(1, vd)− β
δ(1, vp)︸ ︷︷ ︸

Increases with vd , vp

.

Notes

I The decision to attack the system in S0 (va = 1) depends on
the profitability of the attack, not on the defense strategy.

I The defender affects the decision to hack the system through
its defense strategy. B increases with both vd and vp.



Attacker’s Hack Decision Boundary
Attacker’s gain ga(1) = 2.5
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Attacker’s Hack Decision Boundary
Attacker’s gain ga(1) = 4
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Attacker’s Hack Decision Boundary
Attacker’s gain ga(1) = 5
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Attacker’s Hack Decision Boundary
Attacker’s gain ga(1) = 6
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Attacker’s Hack Decision Boundary
Attacker’s gain ga(1) = 7
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Defender Payoff

The cost of implementing the defense strategy vD = (vd , vp) in a
time period is

lD(x , vA, vD) =


Defender loss︷ ︸︸ ︷
gd(ve) +Cp(vp) + Cd(vd) if x = S0,

Cp(vp) + Cd(vd)︸ ︷︷ ︸
Protection cost

if x = S1,

loss caused by an attack gd(ve) is increasing with ve .
The cost to prevent (Cp(vp)) and detect (Cd(vd)) attacks increase
with vp and vd .



Defender’s Objective: Full Information

The defender observes the state of the system (i.e., knows when
the system is compromised, but does not know the precise cause).

S0 S1

π(ve , vd)

1− π(ve , vd)

δ(vh, vp)

1− δ(vh, vp)

vd ≥ 0
vp = 0

vd = 0
vp ≥ 0

The cost functional is defined as

JD(x0, vA, vD) = lD(x0, vA, vD) + βEvA,vD
x0 {JD(x1, vA, vD)}.



Defender’s Objective: Asymmetric Information
The defender cannot observe the state of the system, instead, has
some belief about the initial state.

S0 S1

π(ve , vd)

1− π(ve , vd)

δ(vh, vp)

1− δ(vh, vp)

? ?

vd ≥ 0
vp ≥ 0

The cost function becomes

ĴD(vA, vD) = P(x = S0)lD(S0, vA, vD)+

P(x = S1)lD(S1, vA, vD) + βĴD(vA, vD)



Defender’s cost function: Full information

Theorem: Defender’s cost function with full information
The defender’s discounted cost function is equal to

JD(S0, vA, vD(S0)) =
Q(vd)

1− β
+

β

1− β
π(va, vd)(W (vp)− Q(vd))

1 + β(π(va, vd) + δ(vh, vp)− 1)

and

JD(S1, vA, vD(S1)) =
W (vp)

1− β
+

β

1− β
δ(vh, vp)(Q(vd)−W (vp))

1 + β(π(va, vd) + δ(vh, vp)− 1)
,

where vD(S0) = (0, vp) and vD(S1) = (vd , 0),
Q(vd) = gd(va) + Cd(vd), and W (vd) = Cp(vp).



Defender’s cost function: Asymmetric information

Theorem: Defender’s cost function with asymmetric
information

ĴD(vA, vD) =
gd(va)

1− β
γ(vA, vD) +

Cd(vd) + Cp(vp)

1− β
where

γ(vA, vD) =

{
1

1−β
δ

π+δ if 0 < π + δ < 2
1
2

1
1−β otherwise

and δ = δ(vh, vp) and π = π(va, vd).



Outline

Model
Players
Security Model

Attacker
Optimal Attack Strategy

Defender

Simulations
Nash Equilibrium
Budget constraints

Conclusions



Impact of Cp: With Full information there is a NE in which
the attacker does not hack the system
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Defender’s strategy with limited resources

Minimize
vD

Defender’s discounted cost

subject to
Cd(vd) + Cp(vp) ≤ E ,
vp, vd ∈ [0, 1].
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Conclusions

I Detection alone can prevent attacks on systems that return
low profit to the attacker.

I Prevention becomes more important for critical systems.

I With few resources the best strategy is to prioritize detection
over prevention.

I With limited information the defender tends to invest only in
detection (or maximum prevention when the cost of
prevention is low or the losses are high).

Future work:

I We plan to adapt our models to allow investments in other
risk mitigation strategies, such as cyber-insurance.



Thank You

Questions?

Contact:
Carlos Barreto, carlos.barretosuarez@utdallas.edu


	Model
	Players
	Security Model

	Attacker
	Optimal Attack Strategy

	Defender
	Simulations
	Nash Equilibrium
	Budget constraints

	Conclusions

