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Cyberattacks on IoT devices

• IoT devices are prone to a variety of cyberattacks

• List of Cyberattacks on IoT devices
1. DoS
2. Data Sniffing/Snooping/Eavesdropping
3. Buffer Overflow
4. Firmware Hijack
5. Identity and data theft
6. Spoofing
7. Ransomware
8. Man-in-the Middle
9. Password attacks
10. Botnets ….. just to name a few
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Botnet Detection
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Figure 3b
Adapted from Mimicking attack by botnet and detection at gateway
V.Ramakrishna and R.Subhashini ,Springer
https://link.springer.com/article/10.1007/s12083-019-00854-9



IoT Device Industry Challenges

• IoT Device vendors are under time to market pressure

• Device security is not given consideration it deserves !
Why???

• Huge market for cheap devices
• Cost increases due to security feature implementation
• Delays in product releases

It Means
Loss of early profit and even market share !
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Research Problem

“This research work is about statistical and machine learning based
countermeasures for Botnet attacks on IoT devices ”
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• Anomaly detection has received a lot of attention
o Several statistical and machine learning models and techniques 

have been studied

• Decision Tree is one such model. It offers:
o fast prediction speed
o fast training speed
o small memory usage 
o suitable for deployment on small form factor devices
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Novelty of this work

• Novel labeling method
• Incremental training
• Three new predictive models

o For detection of three attack vectors on IoTID20
1) Mirai-Ack Flooding 
2) Mirai-HTTP Flooding 
3) Mirai-UDP Flooding attacks

• Analysis of performance characteristics as a function of 
data size
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F-Score

Precision = 

F-Score = 

*TP – True Positive, TN- True Negative, FP –False Positive, FN -False Negative
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Reference Model

• Built and validated decision tree model
o IoTID20 dataset Ullah et al. (2020) 
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Novel Labeling Method and Training

• Efficient and cost-effective
o Useful when manual labeling effort is limited

• Incremental Training
• Focus on attack vectors of interest

Mirai Ack Flooding
Mirai HTTP Flooding
Mirai UDP Flooding

• Others
Normal
DoS Synflooding
MITM ARP Spoofing
Scan Hostport
Scan Port
Mirai Hostbruteforce
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Rationale behind this study

• IoTID20 dataset - 625k observations split by Ullah into
Training set - 70% - 438k
Test set - 30% - 175k

• In a real-world scenario:
o IoT Edge device companies are small to mid-sized 
o Working with such huge datasets is not economically viable

• Why?
o Human labor to label the datasets is expensive
o 438k is too high a number
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Rationale behind this study

Example:
Assume that the time taken by a person to annotate 1 data point = 1 
minute 

438000 observations/60 minutes = 7,300 hours
7,300 hours = 912, 8-hour working days
912, 8-hour working days = 2.5 years to finish data annotation
Cost: 0.25-0.5 million dollars at current data labeling rates

Proposed Solution:
• Use smaller labeled training data sets
• Improve performance using unlabeled data with self-learning, 

specialized learning
• Use of Incremental training
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Rationale behind this study

How big should the dataset size be?
“A size that small–mid sized companies can afford”
Example:
a) one day (very small)

8 hours of data labeling yields 480 labeled data points
b) one week (small)

5 days of data labeling is 2400 labeled data points 
c) one month (medium)

4 weeks of data labeling is 9600 labeled data points 
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Experiments

• A set of 16 experiments was conducted 
• 4 different sizes of dataset and 4 different predictive models 
• Features varied from 10 to 70
• Tree depth varied from 2 to 20
• Dataset incremented from 10% to 90% in steps of 10%
• Sizes of dataset

o Very Small – 0.11% of total labeled training data of Ullah (2020)
o Small – 0.6%
o Medium – 2.3%
o Large – 90%-100 %

• Performance characteristics
o Accuracy / F-Score
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Self-Labeling Classifier

• Novelty: It’s the first time it is applied to IoTID20

• It is also referred to as self-training or decision-directed 
learning, hybrid learning method

• Computing resources are leveraged to automatically label 
a large amount of unlabeled data in lieu of human labor 

• Reduces labeling cost significantly
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Specialized Classifier

• Specialized classifier is a special case of the reference 
classifier

• Attacks of interest:
Mirai-Ack Flooding, HTTP Flooding and UDP flooding

• The training dataset treats sub-category of attacks that 
are not of interest as ‘OTHERS’

• Faster labeling => Cost Reduction
o Manual labor not used for annotation
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Combined Methods

• This is a combination of Self-Labeling and Specialized 
Classifiers

• Attack vectors not of interest fall into the ‘OTHERS’ sub-
category

• Further reduces labeling cost significantly
o One reduction comes from using small labeled data and large 

self-labeled data
o Another reduction comes from not labeling the “other”           

sub-categories
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Results – Large dataset

Center for Reverse Engineering and Assured Microelectronics

19

Figure 33

0.25

0.3

0.35

0.4

0.45

0.5

Mirai-Ackflooding Large 
Dataset

0.39

0.395

0.4

0.405

0.41

0.415

Mirai-HTTP Flooding Large 
Dataset

0.816
0.817
0.818
0.819

0.82
0.821
0.822
0.823
0.824

Mirai-UDP Flooding Large 
Dataset



Results – Medium dataset
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Results – Small dataset
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Figure 35
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Results – Very Small dataset
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Observations and Analysis 

Large dataset:

• Up to 4.3% improvement in F-Score in detecting Mirai-HTTP Flooding compared to 
Reference model

• For 2 out of 3 labels, Combined Methods performs the best

Medium dataset:

• Self-Labeling classifier performs nearly the same or better for all three attack vectors

• Self-Labeling classifier gives 1.1% improvement in F-Score for Mirai UDP Flooding
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Observations and Analysis (cont.) 

Small dataset:

• Self-Labeling classifier performs nearly the same or better for all three attack vectors

Very small dataset:

• Specialized classifier and combined methods perform best in detecting Mirai-Ack Flooding 
(13% gain over Reference) and Mirai-UDP Flooding (4% gain)

• Self-learning classifier performed better for Mirai-HTTP Flooding
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Conclusions

It can be concluded that 
• Small to very small datasets perform as well as medium to large datasets in 

terms of F-Score while detecting the three attack vectors

• Smaller dataset sizes save costs

• Self-Labeling predictive models are faster to label and train, and perform well 
with all attack vectors (for very small training dataset)
o They prove to be the most cost effective

• Although the F-Score of the specialized classifier does not match the reference 
model, it offers important benefits:
o Less intensive for human labeler
o Time and cost savings
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Questions and Discussion
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