@ JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

11100 Johns Hopkins Road
Laurel, MD 20723-6099

RUCKUS: A Cybersecurity Engine for
Performing Autonomous Cyber-Physical System
Vulnerability Discovery at Scale

September 22, 2020

Bradley Potteiger, Jacob Mills, Daniel Cohen, Paul Velez
The Johns Hopkins University Applied Physics Laboratory
Laurel, MD

Cyber-Physical Systems are NOT Secure

« CPS-loT are increasingly subjected
to sophisticated cyber-attacks

« Several high profile autonomous
vehicle accidents demonstrate the
tightly coupled nature between the
software and physical dynamics

« CPS not only have to maintain
integrity while under cyber attacks,
but also need to ensure safe
behavior and operation

w September 22, 2020

Moving Target Defenses

 Network
e Software Defined Networking
. . Dynamic Data
¢ Appllcat|on Change data format or representation

* |Instruction Set Randomization

Dynamic Software Application
Change application code (e.g., diversifying
« Data Space Randomization Application binary during compilation)

e Address Space Randomization

* Data
* Database Sharding

Dynamic Runtime Environment
Change the environment during
execution (e.g., memory randomization)

\E Dynamic Platform

Memory Processor Network ‘ &= Change instruction set or operating system

;' Dynamic Network
. ‘J * Change network properties
- (e.g., IP addresses and port numbers)

http://web.mit.edu/br26972/www/pubs/mt_survey.pdf

w September 22, 2020 3

Shifting from Defense to Offense

* DARPA Cyber Grand Challenge
e Autonomous Capture the Flag Competition in 2016

* Led to development of and interest in autonomous reverse
engineering and exploitation tools within academia,
government, and industry (For All Secure, Angr, McSema,
Ghidra, etc.)

* Competition architecture was limited in scope, new
problems emerge when looking at scaling approaches to the
REAL WORLD

 JHU APL
e 7,000 Employees in Laurel, MD
 Embedded reverse engineering SMEs
* Projects often emerge unpredictably with tight deadlines

AR
% zi"t*r {
i 2O

'% l:.'

September 22, 2020

4

Automotive Security

* Vehicle Statistics
» 150 Million connected vehicles by 2020
« 70 ECUs
« 100 Million lines of code

« Significant Vulnerabilities
« ECU Legacy Code

« Connection of non-critical systems to safety-critical
network

» Unprotected communications

« Memory Corruption
« Code Injection
« Code Reuse
* Non-Control Data

Remote
Type App

DSRC based
receiver

Passive key
less entry

== OBD Il
USB

r ooth

Lighting System ECU
(interior & exterior)
Remote key

ADAS system ECU

September 22, 2020 5

Threat Model

System
« CPS Automotive Firmware
« Communication Interface
» Security through Obscurity Approach

* Vulnerability

* Memory corruption vulnerability in CPS
controller

e Common software
 Millions of same model around the world

.,
‘/14 f»f'w

/A‘A‘

September 22, 2020

Problem Formulation

Background

» Proprietary software currently leverages a security through obscurity approach

« There is a large set of previously discovered vulnerability data within open source software and
previously reverse engineered proprietary software

» Proprietary software often relies upon open source libraries
» Most impactful vulnerabilities seem to be most common and simplest

Problem

« How do you speed up the time to reverse engineer mission critical systems?
» How similar and at risk is proprietary software to open source library vulnerabilities?

Hypothesis: Leveraging software similarity as a heuristic can significantly speed up
time to reverse engineer and exploit proprietary software.

7 September 22, 2020

7

Ruckus Architecture

 Hybrid Human + Autonomous
Approach

- Human expertise + in depth
analysis

- Autonomous scalability
e Software similarity heuristic

« Similar firmware will contain
similar vulnerabilities

« Centralized location to reuse
previously discovered
vulnerabilities

- Should start with lowest hanging

fruit first

Database

N~

Firmware Discovery Module

Vulnerability Discovery Module

Correlation Engine Module

-

Web Ul Dashboard

-\

Web Crawler

s a

Binary Analysis

S

~

Symbolic Execution

- >

~

Fuzzing

J

7

Fuzzy Hashing

~

J

-

Dependencies

N\

/

Natural Language

Processing

N

September 22, 2020

8

Firmware Discovery Module

* Input
e Manual Input
* Web Crawler
* Filesystem is carved to accumulate all
files and libraries of interest
* Qutput
e Set of binary files
* Firmware properties

More features coming soon... In the meantime, please read our whitepaper.

Files Uploaded Firmware Categories

Most Common Binary Hashes Across Firmware

Binary Architectures

September 22, 2020

9

Vulnerability Discovery Module

Hybrid approach

* Manual - Fine grained inspection

e Autonomous — Rapid high level analysis
Binary Analysis

* Disassembly

e Control flow graph generation
* Metadata extraction

Symbolic Execution
* Angr

Fuzzing

e Targeted approach with
symbolic execution results fed
as input

w September 22, 2020 10

C O rre I ati o n E n g i n e M O d u I e Algorithm 1 Compute correlation between binaries

Require: Files (F) € Binary Files (f) € {Executable, Library}
Require: Comparators (C) € {Vulns, Dependencies, Signatures,
Fuzzy Hash}
1 Require: Target Firmware (TF) € frF € CTF
Fuzzy H aSh I ng Require: Dataset (D) € Firmwarep € fp € Cp
. . Matches List ML
°
Binary signatures Binary Files BM
for all File F in TF do
if FType 2 f then
Vulnsg = findVulns(F)

* Vulnerabilities

Dependencies Depsy: = findDeps(F)
. . Sigsf = findSigs(F)
* Shared libraries Hashp = computeHash(F)
F.comps= {Vulnsf , Depsf , Sigsf , Hashf}
Natural Language Processing (append(®)
. end for
* Filenames for all Firmware Firm in D do
. MatchScore scorey,, , scoresgs, scorep,sp, totalscore
* Symbol and function names comter—o ger T Thash

for all File Fcur in Firm do
if FType 2 f then
counter+=1
Vulnspcy, = findVulns(Fcur)
Depspcyr = findDeps(Fcur)
SigsFcur = findSigs(Fcur)
Hashp¢,, = computeHash(Fcur)
scorep, = findOverlap(BM, Vulnsgcyr, Depsrcur)
scoresigs = findOverlap(BM, Sigsrcyr)
scorepqsh = findOverlap(BM,HashFcyr)
filescore = (scorep, + scoresigs + scorepqsp) /3
totalscore += filescore
end if
end for
Match Score firmMatchScore = totalscore / counter
Match m = {FirmTF , Firm, firmMatchScore}
ML.append(m)
end for

September 22, 2020

11

Database

e Hybrid Graph and Relational
e Graph —Stores high level relations
Firmware similarity
File dependencies

e Relational — Stores binary blobs and
content

Vulnerabilities
Signatures

* Speeds up lookup time

@ neos]

Postgre SQL_

September 22, 2020

12

Implementation

RUCKUS

1906
L)

o
Waa
okt
i
a

trap

t

Cwan | [rwcm) (o] (2] (Zzm) [| oo

Bo

Process Flow oy R g
|)

 Collect firmware images and carve binary ey
f'leS Of IntereSt { D':g‘da{ﬁg';?&hs J [Web API J Carved Files
» Perform binary analysis to find relevant o
symbols, properties, and dependent A e
Ilbrarles Firmware Biob "[Firmware CarverJ [Identify File } No
« Store binary analysis results in hybrid l
graph-relational database N (
« Fetch vulnerability and correlation e |] @
information to identify most likely ’
vulnerabilities to search for) v
 Perform a more thorough manual [m.a,,-m E,,g.neJ [Vneraslty J Fiter Resus](_[Bmammysis}
vulnerability discovery process and update
database L L J

W September 22, 2020 14

Evaluation

* Mission
« Rapidly reverse engineer adversary automobiles

» Discover potentially exploitable vulnerabilities for
war fighter mission

* Deliverables must be done within a day

* Firmware Dataset
» 5 commercial automotive firmware images
» 20 open source firmware images

« Scenario
« Assume no knowledge of automotive firmware

» Starting with knowledge of vulnerabilities in open
source router firmware

September 22, 2020

15

Router Firmware Descriptive Statistics

* 5 brands of routers

* Cisco

e Belkin

e Liksys
 DD-WRT
* Netgear

* 3 types of vulnerability locations
e Shared libraries
* Configuration files
* Executables

e &
CISCO oo

DT NETGEAR

&

Extracted File System Statistics

Quantity

B Shared Libraries
I Executables
B Config Files

012 3456 7 8 9101112131415161718192021222324

Router Firmware Image Number

Router Firmware Vulnerabilities

—
o
<)

Quantity

belkin. Linksys®

It

I Vulnerabilities

0123456 7 8 9101112131415161718192021222324

Router Firmware Image Number

September 22, 2020

Automotive Correlation Statistics

Firmware Matching Scores (x100)

5 Automobile Vendors

e Miillions of vehicles globally

Correlation Metric

e Similar symbol names

Discovered Vulnerabilities

Fuzzy Hashing
Similar file names

Memory corruption
Web App

Time to Discovery

* Human only — 8 days

Ruckus — 1.5 hours

DD-WRT ‘06

Router ID | Autol | Auto2 Auto3 Auto4 Auto5
Cisco 17 49 32 31 29 21
Belkin ‘16 51 38 29 36 24
Linksys ‘17 46 43 38 39 22
DD-WRT ‘19 52 32 36 44 29
Cisco ‘16 48 48 41 45 48
Belkin 15 58 46 45 41
Linksys ‘16 59 54 58 39

53

DD-WRT ‘08

Belkin ‘14 49 51 47 51 50
DD-WRT ‘13 50 53 51 48 49
DD-WRT ‘17 48 48 47 48 48
Linksys ‘18 47 51 44 45 43
DD-WRT ‘18 42 44 43 42 44
Netgear ‘10 41 40 41 42 41
Netgear ‘12 36 35 38 41 30
Netger ‘14 42 37 36 32 31
DD-WRT ‘20 31 34 39 31 31
Linksys ‘19 29 31 30 29 29
Netgear ‘16 23 22 26 27 23
Belkin ‘18 25 20 26 23 21
Cisco ‘18

Netgear ‘18

Netgear ‘19 23

Netgear 20 18

Quantity

Automotive Firmware Vulnerabilities

Hm Vulnerabilities

il

Automotive Firmware Image Number

September 22, 2020 17

Conclusion

* Human fine grained inspection + autonomous correlation and vulnerability discovery provides a
comprehensive first pass to rapidly discovery vulnerabilities in proprietary
* Ruckus significantly decreases time to vulnerability discovery versus a traditional human only

approach
* There is a significant correlation between proprietary automotive firmware and open source

router firmware
* Security through obscurity is no longer effective
* More active and dynamic defenses are necessary

* Software needs to be more unique

w September 22, 2020 18

Questions?

w September 22, 2020 19

