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It is unclear how to think about trust or to model
its ebb and flow. Is there some sort of Second Law
of Thermodynamics of trust, where trust starts high
and is dissipated over time? Or is it the contrary,
that trust starts low and can grow through a series
of good experiences? Is it more complex, and how
can the waxing and waning be thought about?
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ABSTRACT

The diverse views of science of security have opened up sev-
eral alleys towards applying the methods of science to se-
curity. We pursue a different kind of connection between
science and security. This paper explores the idea that se-
curity is not just a suitable subject for science, but that the
process of security is also similar to the process of science.
This similarity arises from the fact that both science and
security depend on the methods of inductive inference. Be-
cause of this dependency, a scientific theory can never be
definitely proved, but can only be disproved by new evi-
dence, and improved into a better theory. Because of the
same dependency, every security claim and method has a
lifetime, and always eventually needs to be improved.

In this general framework of security-as-science, we ex-
plore the ways to apply the methods of scientific induction
in the process of trust. The process of trust building and
updating is viewed as hypothesis testing. We propose to
formulate the trust hypotheses by the methods of algorith-
mic learning, and to build more robust trust testing and
vetting methodologies on the solid foundations of statistical
inference.

Categories and Subject Descriptors

K.4.4 [Computers and society]: Electronic commerce—
Security ; K.6.5 [Management of computing and infor-

mation systems]: Security and protection; D.4.6 [Operating

Systems]: Security and Protection
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1. INTRODUCTION

The effort towards science of security was born from the
need for a more systematic approach to security [17, 26, 22,
38, 34]. It resulted in new empiric and experimental ap-
proaches to cyber security [3, 29, 30]. The fact that science
of security still means many things to many people should
perhaps be seen as a feature and not a bug, since already se-
curity on its own means many things to many people, and it
is natural that they study it from many directions [34]. On
the other hand, it seems that each step of scientific progress
requires a unifying idea, each of them showing that a cer-
tain group of trees is actually a forest [20]. What is then the
unifying idea of science of security?

1.1 Science is something else

1.1.1 What science is not

Every known civilization seems to have developed tech-
nology, art, and religion. But only the Western Civilization
has developed science. Science emerged in Europe during
the Renaissance, and caused the Industrial Revolution. This
unique stream of events is analyzed in some detail in [20].1

There are, of course, many definitions of science. Some
of them are shaped to include the teachings of Ron L. Hub-
bard; some to include marxism, or even the daily thoughts
of the current leader of North Korea. Most definitions, how-
ever, point to some of the features of the methodological
movement that led to understanding the natural processes

1It has been objected that this view can be construed as
eurocentric. While the word ”science” can, of course, be
used to denote many things, as explained in the next para-
graph, theory of science defines science as the movement
that led to the Industrial Revolution. Since the fact that
the Industrial Revolution emerged in Europe is historically
uncontestable, the fact that science emerged in Europe fol-
lows from this definition. Moreover, as incisive critics of
the Industrial Revolution even before its current destruc-
tive consequences became clear, the theorists of science can
hardly be accused of praising Europe for being the cradle of
science [11].



like heat, electricity, magnetism, radiation, or networking.
Although the notion of science can be extended to include
astrology, scientology, theology, mathematics, or engineer-
ing, it does not seem useful to stretch it too much. Assigning
the status of science, say, to the engineering principles and
processes (whether those that enabled the public works of
Ancient Egypt, or those that emerged in medieval alchemy,
or in Renaissance architecture, or in modern software en-
gineering) might conceal something essential about science.
Can science be reduced to its technological thrust [22]? Or
does it boil down to the view that the world is governed by
a system of laws [38]? Or is there more to it?

Many ancient civilizations developed the quantitative meth-
ods that enabled them to plan and execute extensive engi-
neering projects, and change the landscapes of their environ-
ment. Many of them also explained the world around them
through sophisticated theoretical edifices and that included
the ’Laws of Nature’, formalized as mythologies, or gathered
in sacred texts, often equipped with extensive symbolic sys-
tems. But no one until the Age of Science came anywhere
near to understanding and reproducing, e.g., the thermo-
nuclear processes of Sun; or the space-time curvature, with-
out which our GPS systems could not surf on the geodesics,
and would keep sending us wrong coordinates. No one be-
fore science came anywhere near to understanding genomics
and to engineering the basic processes of life; and nowhere
near to connecting our world into a network of networks, and
spanning a distance-free space, where every two nodes are
neighbors, and where our joint problem solving, and prob-
lem creating capabilities seem to be reaching a completely
new level. This network of networks is what we call cyber
space. Inhabited by the processes that we programmed, but
whose interactions we cannot control, cyber space hosts a
new nature in need of a new science. Is this new level of
our civilization just another new level of yet another civi-
lization, or is it something else? Is the science that brought
it all about just another way that we found to generate new
technologies, or just another religion that tells us the laws
of the world, or is it something essentially new?

There is a qualitative difference between the science-ge-
nerated technologies, and the spontaneously evolved tech-
nologies. There is also a qualitative difference between the
symbolic systems of theologies and mythologies that emerge
from religions, and the symbolic systems of mathematics
and computation that underlie science. There is a qualita-
tive difference between the religious rituals on one hand and
the scientific protocols on the other. The essence of these
differences is not in the levels of complexity or effectiveness.
There are complex religious systems, and there are simple
scientific theories. Many religions and even superstitions
postulate their ’Laws of Nature’ that are structurally in-
distinguishable from those postulated by science. Astrology
and phrenology have in their time been tested as scientific
theories, by scientific methods, and rejected not for struc-
tural reasons, not as unscientific, but as wrong. And there
are also effective religious systems, and there are ineffec-
tive sciences. E.g., although the processes of photosynthesis
are everywhere around us, at the bottom of all of our food
chains, science has remained unable to understand what do
the plants really do when they bind photons into sugars.
There is a quantum effect, but science has been ineffective
in explaining it. It has also been less effective than most
religions in addressing people’s emotional and social needs.

So what really distinguishes scientific theories, if it is not
complexity, and not effectiveness?

1.1.2 What science is

I propose to consider the logical pattern of inductive in-
ference as the essence of science: While religion claims to
provide the truth, science only seeks to disprove false hy-
potheses.2

In a formal sense, science is the quest for disproving the-
ories. This formal sense was fully implemented for the first
time in Ronald Fisher’s practical methods of scientific in-
ference [13, 14], and then analyzed theoretically in Karl
Popper’s extensive and influential work [36]. The historic
support for this view of science was provided by Thomas
Kuhn [20], while the scientists themselves provided some
of the most compelling examples from their current prac-
tices [12]. Other leading templates of scientific inference
(e.g. the Neyman-Pearson testing [28], or Bayesian infer-
ence [1, 5]) may appear to offer ways beyond this negative
logic of science, as the quest for merely improving scientific
theories through disproving false hypotheses. But a closer
look shows that they only formalize the task of hypothesis
selection, and thus support formation of new theories, not
proving. They do not provide a method to definitely prove
anything. Richard Feynman announced this with compelling
simplicity in his lectures on ’The Character of Physical Law’
[12]:

If we have a definite theory, from which we can
compute the consequences which can be com-
pared with experiment, then in principle we can
prove that theory wrong. But notice that we can
never prove it right. Suppose that you invent a
theory, calculate the consequences, and discover
every time that the consequences agree with the
experiment. The theory is then right? No, it
is simply not proved wrong! In the future you
could compute a wider range of consequences,
there could be a wider range of experiments, and
you might then discover that the thing is wrong.
[. . . ] — We never are definitely right; we can
only be sure when we are wrong.

This is perhaps the best kept secret of science: Science does
not provide persistent theories; it only provides methods to
disprove and improve our hypotheses.

1.2 Security is like science

The fact that the process of security is of the same type
like the process of science can be illustrated by translating
Feynman’s statement from the language of science to the
language of security:

If we have a precisely defined security claim about
a system, from which we can derive the conse-
quences which can be tested, then in principle we
can prove that the system is insecure. But we can
never prove that it is secure. Suppose that you
design a system, calculate some security claims,
and discover every time that the system remains

2There are, of course, many other ways to characterize sci-
ence. The claim here is that this one is useful for the pur-
poses of science of security.



secure under all tests. The system is then secure?
No, it is simply not proved insecure! In the fu-
ture you could refine the security model, there
could be a wider range of tests and attacks, and
you might then discover that the thing is inse-
cure. — We never are definitely secure; we can
only be sure when we are insecure.

A scientific approach to security must therefore begin with
the realization that there is no persistent security. Cryptog-
raphers have known for a long time that every key has a
lifetime. It is time that we recognize that every security
claim has a lifetime. The designers of protocols and systems
have, of course, accumulated a lot of empiric evidence about
this phenomenon [32]. The point is to understand it as a
logical phenomenon.

Upon the admission that theories cannot be definitely
proved, but only disproved and improved, science has gained
its current unparalleled power to harness nature. Upon the
realization that security guarantees cannot be definitely as-
sured, but only broken and strengthened, science of security
will gain the ability to tap its power to protect from the
same methodological source.

1.3 Zoom on trust
In this paper we focus on the scientific approaches to a

special family of security claims: the statements of trust.
While a general security claim says that a key K is un-
compromised, or that a protocol P guarantees an authentic
channel, a statement of trust says that Alice trusts the key
K for use in a particular cipher, or that Bob trusts the pro-
tocol P to establish an authentic channel with Alice. A
statement of trust is thus a security statement bound to two
subjects and an object: who trusts what to whom. The par-
allel between the security processes of trust building and the
scientific methods of hypothesis testing seems like a partic-
ularly good illustration of the general logical link of security
and science, so we pursue it in the rest of this paper.

Outline of the paper

In Sec. 2 we briefly explain the concept of trust used in the
paper, and why is it interesting to model the process of trust
as hypothesis testing. In Sec. 3 we show on toy examples how
to apply the three standard methods of statistical inference
in trust testing. In Sec. 4 we show how to formulate the best
trust hypotheses a priori, since it is notoriously difficult to
extract the normal behavioral profiles from empiric data.
In Sec. 5 we comment about the relations of the presented
ideas with the other views of trust, and with the application
of statistics in intrusion detection.

2. TRUST AS HYPOTHESIS TESTING

2.1 What is trust?

Security analyses often begin with the assumptions that
some of the subjects are honest, i.e. that they behave accord-
ing to some prescribed protocol rules, whereas the others are
dishonest, and launch attacks. Trust internalizes the hon-
esty assumptions into beliefs of subjects about each other.
E.g., we say that Alice trusts Bob if she believes that he
will behave honestly, according to some protocol agreed im-
plicitly or explicitly. In such a trust statement, Alice is the

trustor, and Bob is the trustee. In social and electronic net-
works, and on the web, trust is implemented in a variety
of ways: as feedback services in web commerce, as the web
of trust or certificate authorities in the various versions of
Public Key Infrastructure, etc. The underlying trust models
often include trust ratings, which quantify trust, and the en-
trusted concepts, which qualify trust. A survey of the models
of trust used in computer security research can be found in
[18]. Dynamics of the trust processes in network computa-
tion were analyzed in [15, 31, 33], and the problem of trust
was introduced in the framework of science of security in
[16].

2.2 Inductive inference of trust

Just like science can never settle but has to keep testing
its theories and refining its hypotheses, trust can also never
settle and needs to keep testing its hypotheses. Just like
a scientific theory can always turn out to be wrong, trust
can always be broken. The reasoning about such ongoing
processes goes under the name of inductive logics, which is
quite different, and much less familiar than deductive log-
ics. The central problem of the inductive inference of trust
is expressed by the central principle of the modern court
of law, i.e. the principle of due process: that the accused
must be presumed innocent until proven guilty [35]. But
this is just the legal form of a more general social principle
of trust: that people should be trusted until proven untrust-
worthy.The burden of proof is here on the prosecution, or
on the accusers. The dual principle of ordeal, typical of me-
dieval trials, places the burden of proof on the defense, and
requires that the accused be presumed guilty until proven
innocent. The corresponding social maxim is the princi-
ple of distrust (or suspicion), namely that people should be
trusted only if they are proven trustworthy. These two views
of trust, the optimistic and the pessimistic one, correspond
to the two social functions of trust:

• to support stable social links based on cumulative trust :
”I trust you because I know you”

• to enable new social links through a leap of trust : ”I
trust you although I don’t know you”

Note that both the trust principle and the suspicion prin-
ciple are asserted in a logical process akin to science: they
are hypotheses that need to be tested. The logical paral-
lel described in the Introduction emerges again: just like a
scientific theory can always be disproved by a new experi-
ment, but can never be definitely proven, trust can always
be broken, and can never be settled. We just follow this
parallel.

2.3 How to trust methodically?

The scientific method is the method for hypothesis test-
ing through empiric validation. This means that a scientific
theory can only be validated on a finite number of samples
or instances, since the empiric data are always finite. Hence
the asymmetry of inductive inference: while a counterexam-
ple can definitely disprove a theory, no amount of experience
can definitely prove it. This is where the problem of induc-
tion emerges [21].

Statistical methods have been developed as tools for de-
ciding when to reject a hypothesis [13, 14], and also which



alternative hypothesis to endorse [27, 28]. In the experi-
mental setting, statistical methods moreover allow testing
multiple hypotheses and quantifying their likelihood [9].

2.4 How many trust values?

Up to the point where the trust decisions need to be
made, trust can be quantified in many ways, reflected to
some extent by the trust ratings, as mentioned in Sec. 2.1.
There may be many colors, shades, and nuances of trust,
in-between trusting and not trusting. At the end of the
day, though, a trust decision must be extracted: Will the
trustor trust the trustee enough to enter into the entrusted
transaction? At the moment of decision, all previous con-
siderations are reduced to one of the two answers: yes or no.
This simple outcome is not only the process requirement of
trust, akin to the process requirement of justice, where the
verdict of guilty or not guilty must be extracted from what-
ever mixture of subtle and dubious concerns may precede
it. More importantly, the final trust decision is in principle
also the only observable manifestation of trust. The rich
models of trust are our theories, attempting to explain the
unobservable causes of the trust decisions. With such the-
ories, science always does the same thing: it tests them as
hypotheses, and decides whether they should be rejected or
not yet. The good news is that the trust process seems
similar. The bad news is that the yes-no decisions are not
simple.

In Sec. 3, we sketch how the basic statistical methodolo-
gies apply to trust decisions, i.e. how the trust hypotheses
can be tested scientifically. In the subsequent Sec. 4, we dis-
cuss a harder problem of trust science, that does not yield
to the standard methodologies: how to formulate the trust
hypotheses for testing.

3. TESTING TRUST HYPOTHESES

Suppose that you are interacting with a system S pre-
sented by a set of observable behaviors B. Depending on
the ongoing observations of the system behaviors, you must
make decisions whether to entrust the system with some
critical or security sensitive operations. For instance, if S
is a computational device, then B can consist of the vari-
ous computational behaviors: it may run fast or slowly, it
may crash or spontaneously restart, it may show high or low
CPU load, frequent or intermittent network accesses, vari-
ous power usage behaviors, etc. If S is a closed network or
a large organization, then the observable behaviors B may
consist of the various network phenomena, such as local load
imbalances, clustering and community formations, network
chatter or its absence, and so on. If S is a market segment
or a network of contractors, then B consists of the vari-
ous market behaviors: clear or unclear market positions and
strategies, pricing drift, shifts in supply or demand, overt or
covert information propagation. In all cases, it is interesting
to assume that the observable behaviors conceal some ulti-
mately unobservable causes: the computational device may
have a firmware virus or a hidden hardware component; the
organization may be penetrated by undetectable moles, or
bubbling with defectors; the market may be manipulated
by a colluding cluster, or swayed by hidden incentives. —
Science offers methods to detect the unobservable causes of
some observable phenomena.

The observations of the observable behaviors B are mod-
eled by a real function f : B → R, which is often called
a statistic. A statistic may list the raw measurements of a
sample, but it more often displays some property, e.g. the
mean, the deviation, a higher-order moment, or some other
combination of data.

One thing that a statistic does not display is a distribution
of the behaviors in B. The distribution of the behaviors, i.e.
how often does a behavior b ∈ B come about in a system
S , is what a scientific analysis attempts to induce from the
observations. More precisely, a scientific analysis proceeds
by

(1) setting a hypothesis θ, presented by a probability dis-
tribution Prθ : B → [0, 1], and then

(2) testing whether the statistic f : B → R supports or
disproves the hypothesis θ.

In the context of trust, the probability distribution Prθ :
B → [0, 1] is intended to capture the trust profile of the
system S : e.g., how often does it manifest the undesirable
behaviors, how reliable is its track record, etc. Testing the
trust hypothesis θ should tell us whether to stick with it, or
replace it with another trust statement.

In this section, we assume that the trust hypothesis Prθ is
given: e.g. from the records of past behaviors. The statistic
f presents a new record, capturing recent behaviors. The
task is to align the two. The problem of formulating Prθ
will be discussed in the next section.

3.1 Significance testing of trust

For simplicity, assume that the system S has just 4 ob-
servable behaviors, collected in the set B = {a, b, c, d}. To
be trustworthy, the system should manifest the acceptable
behavior a at least 98% of time. It may block b, or crash c
for .5% of the time, and it may delay d its functioning for
1% of the time. So we postulate the null hypothesis that
the system S behaves according to the probability distri-
bution Pr0 : {a, b, c, d} → [0, 1] displayed on Table 3.1. For

B a b c d

Pr0 .98 .005 .005 .01

Table 1: Trustworthy behavior

even more simplicity, assume that we observe just one of the
events from the set {a, b, c, d}. This means that the statistic
f : {a, b, c, d} → R will have the value 1 for one event, and
0 for the rest. Should we continue to trust the system S?

In statistics, the answer to this question is reduced to
determining whether the sample represented by the statistic
f is significant enough to reject the null hypothesis (which
was in our case that the system S was trustworthy). The
idea of statistical significance testing is that the observation
f is significant enough to reject the null hypothesis just when
the observation f is extremely unlikely according to the null
hypothesis. So we could fix a very small number α > 0
and say that the null hypothesis should be rejected if x is
observed such that

Pr0
(

f(x) = 1
)

< α (1)

Since the times before computers, the scientists got in the
habit of tabulating and using α = 5% and α = 1%. So if we



use α = 1% and observe b or c, we would have to reject the
null hypothesis, and stop trusting the system S ; and if we
observe a or d we could continue to trust it.

But to not oversimplify things, we should mention that
already the founder of statistics, Ronald Fisher, argued in
[13, 14] that a test should be considered significant and the
null hypothesis rejected only when

∑

Pr0(y)≤P

Pr0(y) < α (2)

where P = Pr0
(

f(x) = 1
)

for the observed event x. In
words, the total probability of all events y that are at least
as unlikely as the observed event x should be less than α.
The left-hand side of (2) is the p-value of the observation
f under the hypothesis Pr0. The p-value of both b and c

is now .1, and the null hypothesis is never rejected. The
p-values for a and d are 1 and .2 respectively.

Remark. It should be noted here that significance testing
is a typical embodiment of the negative logics of scientific
induction: a test is only significant if it disproves the null
hypothesis. This aspect of inductive logic is similar to the
proof by contradiction in deductive logic; but it is different
from deductive logic in that this is the only inductive proof
schema, while deductive logic also has the positive schemas.
This logical constraint is just what makes inductive logic
and the scientific methodologies built upon it, suitable for
the reasoning about security and trust, as it echoes the fact
that they can always be broken, and cannot be assured by
logics.

3.2 Powerful testing of trust

While the significance testing allows rejecting the null hy-
pothesis when significant tests are found, it does not allow
drawing any conclusions about the null hypothesis when it is
not rejected, and no conclusions about the other hypotheses
when the null hypothesis is rejected. The testing method
devised by Neyman and Pearson [27, 28] considers two com-
peting hypotheses Prθ : B → [0, 1], for θ ∈ {0, 1}, and max-
imizes the probability that the null hypothesis θ = 0 is re-
jected when the alternate hypothesis θ = 1 happens to be
true. This probability is called the power of a test.

It is assumed that the null hypothesis θ = 0, claiming that
the observed sample will be distributed according to Pr0 :
B → [0, 1], is the one that is currently accepted, whereas the
alternate hypothesis θ = 1, claiming that the observations
will be distributed according to Pr1 : B → [0, 1], will gain
validity if the test turns out to be significant and rejects the
null hypothesis. For instance, when a scientist hypothesizes
that a phenomenon A is the cause of the phenomenon B,
then the null hypothesis is usually taken to be the claim
that the phenomenon B is not correlated to A, whereas the
alternate hypothesis is the claim A and B are correlated.
When a judge needs to decide whether the accused A has
committed a crime B, then the null hypothesis is that A is
innocent with respect to B, whereas the alternate hypothesis
is that A is guilty of B.

To continue with the example from Sec. 3.1, now consider
the two hypothetic distributions of the behaviors in the sys-
tem S displayed in Table 3.2. In the last line of the table is

the likelihood ratio Pr1(x)
Pr0(x)

. Neyman and Pearson [27] use the

likelihood ratio to decide when to reject the null hypothesis
θ = 0 in favor of the alternative hypothesis θ = 1. For this

B a b c d

Pr0 .98 .005 .005 .01
Pr1 .098 .001 .001 .9

Pr1(x)
Pr0(x)

.1 .2 .2 90

Table 2: Trustworthy vs untrustworthy behavior

purpose, they introduce the decision thresholds α and β,
displayed in Table 3.2, which define the error probabilities
as follows

• α is the probability that the null hypothesis is rejected
when it is true, whereas

• β is the probability that the null hypothesis is not re-
jected when it is false.

reality
θ = 0 θ = 1

decision
θ = 0

true
1−α confidence

false negative
β = Pr(0|1)

θ = 1
false positive
α = Pr(1|0)

true
1− β strength

Table 3: Decision thresholds α and β

Since the rejection of the null hypothesis is conventionally
viewed as the positive outcome a statistical test, the first
type of error is called a false positive decision, whereas the
second type of error is called a false negative. E.g. in the
court of law, sentencing an innocent person is a false posi-
tive, and letting a guilty person free is a false negative, since
the null hypothesis is that the accused is innocent, and the
burden of proof towards rejecting this hypothesis is on the
prosecution. In a fire alarm system, the null hypothesis is
that there is no fire, and the false positive is when the alarm
rings without fire, whereas a false negative is when the alarm
does not ring when there is fire. It is generally accepted as
worse to have false positives, since they lead to switching off
the fire alarms, rejecting the entire testing frameworks, and
thus impelling the negatives as the only outcomes. Neyman
and Pearson therefore design the testing frameworks where
the upper bound α of the false positive decisions is freely
chosen by the tester, and then the upper bound for the false
negative decisions is minimized. The power of a test is de-
fined to be the probability 1− β that the null hypothesis is
rejected when it is really false. The Neyman-Pearson Lemma
[27] characterizes the decision rules of maximally powerful
tests.

In the case of the trust test f : {a, b, c, d} → R from
Sec. 3.1, which boils down to an observation of a single sys-
tem event, the Neyman-Pearson powerful testing rejects the
null hypothesis θ = 0 in favor of the alternative hypothesis
θ = 1 at the level α = 1% only if the event d is observed,
and otherwise fails to obtain a significant result. This means
that we should only reject the trust hypothesis θ = 0 and
endorse the hypothesis θ = 1 that the system S is not trust-
worthy if the observed delays d amount to more than 1% of
the sampled performance time. Crashing or blocking .5% of
the time should not trigger our distrust.



Note that the threshold α = 1%, imposed in the powerful
testing as the upper bound of the false positives, has elim-
inated the significance of the observations b and c, which
were significant enough to cause the rejection of the null hy-
pothesis at the same threshold level α = 1% in Sec. 3.1. On
the other hand, the minimization of the false negatives in the
powerful testing has now introduced the observation d as sig-
nificant, which it was not the significance testing. The two
testing approaches thus implement two incomparable views
of trust. It seems worth while to further explore which one
might be more suitable for which application domains.

Although the powerful testing allows comparing pairs of
hypotheses (albeit in essentially asymmetric roles of the null
hypothesis and its alternative!), it actually provides little
help in selecting between multiple alternative hypothesis.
The best we can do with powerful testing in such situations
is to test the null hypothesis against each of the candidate
alternatives. However, such approaches lead to pathological
situations, where the hypothesis 0 is rejected against 1, 1
against 2, and 2 against 1. Similar phenomena arise when
the same significance test is applied to several hypotheses, in
the hope that some will be rejected and some not. Overcom-
ing such difficulties requires randomized sampling, Bayesian
reasoning, and controlled experiments.

3.3 Experimental testing of trust

If I know an overall probability Pr(0) that a system similar
to S might be trustworthy, and Pr(1) = 1 − Pr(0) that it
might not be trustworthy, then I could derive the probability
Pr(0|x) that the system S is trustworthy after the observed
behavior x ∈ B using the Bayes’ law:

Pr(0|x) =
Pr0(x)Pr(0)

Pr0(x)Pr(0) + Pr1(x)Pr(1)
(3)

If there are several hypotheses θ ∈ Θ = {0, 1, 2, . . . , n} about
the behavioral profiles of the systems, then I can calculate
the probability of each of them after the observation x ∈ B
by the general formula

Pr(θ|x) =
Prθ(x)Pr(θ)

∑

ψ∈Θ Prψ(x)Pr(ψ)
(4)

However, the only way to control the distribution Pr : Θ →
[0, 1] of the trust profiles of a population of systems to which
S belongs is to model this population in the experimental
environment of a laboratory, where I could control that the
sample is distributed according to Pr : Θ → [0, 1]. Sampling
the behaviors of the system S in this controlled environment
would then allow me to calculate Pr(θ|x) according to (4)
for all profiles θ ∈ Θ, and to select the most likely profile
θ = 0 ∈ Θ as my current trust hypothesis about S .

But even this experimental environment, where I can im-
pose the prior probability Pr : Θ → [0, 1] by controlling
the sample, does not give me the prior probabilities Prθ :
B → [0, 1], which express the trust hypotheses to be tested.
Where do they come from?

4. FORMULATING TRUST HYPOTHESES

How exactly should I find the trust hypotheses suitable
for testing? How should I select the most important ones?

4.1 Scientific presumption of innocence

Both the scientific methodology and the sound legal prac-
tices suggest that the null hypothesis should be that the
system is trustworthy, i.e. ”innocent until proven guilty”
[35]. The alternate hypotheses should describe the various
forms of undesired behavior, which the tested sample might
uncover if the null hypothesis is rejected.

If I know the statistical profile of the desired normal be-
havior of a system, then I should take that profile as the
null hypothesis Pr0 : B → [0, 1]. But it is usually difficult to
specify the desired normal behavior as a single profile. It is
much easier to characterize each of the abnormal behaviors,
which we learn from the anomalies experienced in the past.
That is why the statistical intrusion detection systems [10,
24, 7] and forensics mostly work with the statistical profiles
of intruders and criminals, and test these profiles as the null
hypotheses.

The problem with this ”guilty until proven innocent” ap-
proach is not just that it is unfair in court. A greater prob-
lem arises from the logical limitation of inductive inference:
that the null hypothesis can never be proved by a finite num-
ber of tests, but can only be disproved. By testing the pro-
files of guilt on the given samples of behaviors, we can never
demonstrate anyone’s guilt; we can only fail to disprove it.
The consequence in the realm of security is that the trust
based on testing and rejecting every known form of undesir-
able behavior is not only impractical, but also the weakest
possible form of trust. All that you know is that no guilt has
been proven yet. The complexity and the ineffectiveness of
this method is illustrated time and again by the complexity
and the ineffectiveness of the vetting procedures, which of-
ten admit untrustworthy subjects, while regularly rejecting
trustworthy subjects. Scientifically based trust, based on
testing the null hypothesis that the subject is trustworthy,
would obviously be simpler and more effective, both because
it allows sound statistical controls of the false positives and
the false negatives, and also because it eliminates not only
the known anomalies, but all anomalies that are inconsis-
tent with the normal behavior profile described by the null
hypothesis.

But where can I find the statistical profile Pr0 : B →
[0, 1] characterizing the trustworthy behavior of the system
S? I could log the normal functioning of the system for a
long time; but which observable system events B yield the
relevant observations?

The first limitation of scientific induction, discussed so
far, is that it never proves, but only disproves its hypotheses.
Here we confront its second limitation: the null hypotheses
cannot be extracted from the empiric data, but always have
to be formulated a priori.

4.2 Compressing trust

The problem of formulating a priori hypotheses was dis-
cussed in philosophy of science several centuries ago, but
remained unsolved. The path towards the modern solutions
was opened by Ray Solomonoff [39], and cleared by Andrei
Kolmogorov [19] and his school. The versions suitable for
practical applications in machine learning and in statistics
were developed by Jorma Rissanen [37], Chris Wallace [40],
and many others. Very roughly, the idea is as follows.

Continuing with the notation from Sec. 3.3, we still de-
note the set of hypotheses by Θ. The problem is that we do



not know the probabilities Prθ : B → [0, 1]. We are, how-
ever, given a sufficiently large data sample, from which we
extract the frequency distribution Pr : B → [0, 1] of each
observation.

The task is now to find a hypothesis θ = θ0 ∈ Θ such
that Pr0 : B → [0, 1] maximizes the conditional probability
Pr(θ0|x) in (4) when the behavior x ∈ B is observed. Since

Pr(x) =
∑

ψ∈Θ

Prψ(x)Pr(ψ) (5)

the Bayes’ formula (4) now becomes

Pr(θ|x) =
Prθ(x)Pr(θ)

Pr(x)
(6)

The null hypothesis θ0 gives the probability distribution
Pr0 : B → [0, 1] such that for the observed x holds Pr(θ0|x) ≥
Pr(θ|x) for all θ ∈ Θ. Since the probability Pr(x) is given by
the observed data, the task only depends on the unknown
hypotheses θ ∈ Θ.

The idea used by Solomonoff, Kolmogorov and others is to
apply Occam’s razor here, and to postulate that the simplest
hypotheses have the highest a priori probability. The idea
is implemented by taking into account the lengths of the
descriptions of the probabilities in (6). Using the optimal
Shannon-Fano encodings [8], we can write a number p ∈
[0, 1] using − log p bits. The task of maximizing (6) now
becomes the task of minimizing

− log Pr(θ|x) = − log Prθ(x)− log Pr(θ) + log Pr(x)

Since Pr(x) is fixed, this means that

θ0 = argmin
θ∈Θ

{− log Prθ(x)− log Pr(θ)} (7)

This is equivalent to Pr0(x) · Pr(θ0) ≥ Prθ(x) · Pr(θ) for
all θ ∈ Θ, which picks θ0 to maximize the chance that
x is observed. This is what makes θ0 the best a priori
null hypothesis. The minimality of the description length
− log Pr(θ0) means that θ0 is the simplest. The minimal-
ity of − log Pr0(x), or equivalently the maximality Pr0(x),
means that x is the most likely prediction of θ0. The mini-
mality of − log Pr0(x)− log Pr(θ0) means that θ0 is the sim-
plest hypothesis among those that predict x.

Instantiated to the realm of trust, (7) thus says that the
best trust hypothesis is the one that provides the shortest
description of my notion of trust, which fits the observations
that I have made.

The rapidly expanding research area of algorithmic learn-
ing and statistical inference is concerned not only with the
effective computations of the a priori hypotheses, but also
with the situations where the succinct descriptions of the
data and the hypotheses need to be combined with em-
piric data. The right-hand side of (7) is roughly Rissanen’s
Minimum Description Length (MDL) [37] of the distribu-
tion of the observed data x. Wallace’s Minimum Message
Length (MML) [37] differs in the compression methods used.
Kolmogorov’s minimal sufficient statistic [19] uses the opti-
mal computable encodings as the compression method. The
standard compression algorithms, e.g. based on the very ef-
ficient Lempel-Ziv algorithms [41, 42] are also often used,
and give reasonable results. In any case, the best null hy-
pothesis is the one which best compresses the observed data
x, within some given family of compression algorithms. The

underlying idea is that the better we understand the data,
the better we compress them.

Although these methods give somewhat degenerate results
when applied to our toy examples from Sec. 3, just slightly
larger trust hypotheses show the intuitive meaning of (7)
in the realm of trust. My trust hypothesis should be the
simplest description of the desired behaviors which best ap-
proximates the observed behaviors of the tested system.

5. BACKGROUND AND FUTURE WORK

The main claim of this paper is that the methods of sta-
tistical inference, on which modern science has been built,
can be used to analyze and secure trust. We close the paper
relating this idea with the general context of trust research,
and in particular with the existing application of statisti-
cal methods to trust testing in the framework of intrusion
detection.

The literature about trust is very extensive, as it is studied
in psychology, social sciences, economics, game theory [4,
6, 23]. Even within the closely related security research
communities, the word ’trust’ is used in several different
meanings [18]. The notion of trust used in this paper is
based on [33].

A quantitative analysis of the process of trust building was
initiated in [31]. The question of trust decisions was, how-
ever, avoided by reducing them to the preferences extracted
from the trust ratings. The question of trust measurements
was avoided by reducing them to user ratings and feedback,
which are usually available in web commerce, but not in
general. In system security, the task of quantifying security
in general and trust in particular becomes a problem [2, 25].
In the present paper, we did not consider the problem of
quantifying trust a posteriori, i.e. using the measurements
of the past performance, but focused on the harder prob-
lem of formulating the trust hypotheses a priori, i.e. before
any empiric data are available. This problem arises even if
the satisfactory methods for quantifying trust and security
a posteriori are available, because the data are not always
available. On the other hand, understanding how to express
the a priori trust beliefs may also help in devising and vali-
dating the methods to quantify them a posteriori.

The idea of statistical intrusion detection, going back to
Dorothy Denning [10] and her work with Peter Neumann at
SRI in the 80s, can be viewed as an application of statis-
tics to detect the subjects or the components that are not
trustworthy. An early survey is [24]. The practices of in-
trusion detection have evolved a lot since those early days,
and the rule based methods seem to have found broader
applications than the statistical methods. One of the rea-
sons often mentioned is the difficulty to control the false
positives that arise when statistical tests are used to detect
the intruders. We explained in Sec. 4.1 why the statistical
methodologies suggest that trust testing should be based on
taking a trustworthy behavior as the null hypothesis, and
why testing for anomalies and the untrustworthy behaviors
leads to the false positives that are harder to control, and
to less reliable results overall. In statistics, proving that
someone is not trustworthy is not equivalent to disproving
that they are trustworthy. The general method for control-
ling the false positives when disproving trust is outlined in
Sec. 3.2. The false positives thus emerge as a hard problem
in statistical intrusion detection because it tests for the in-



trusions, and not for trust. The reason is, of course, that
the intruder profiles are much easier to come by than the
trustworthy profiles. In the Sec. 4, we discussed the way to
solve this problem using the methods of algorithmic learn-
ing. Whether that brief discussion explained or obscured the
idea, there is very little doubt that at least a theoretical so-
lution lies in this direction. But the practical work towards
implementing such computation-based scientific methodolo-
gies on the concrete problems of trust lies ahead.
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