S S Carnegie Mellon

Social Network Analysis
for Science of Security

Prof. Kathleen M. Carley
412-267-6016

kathleen.carley@cs.cmu.edu

Center for Computational Analysis of
Social and Organizational Systems

1 http://www.casos.cs.cmu.edu/


mailto:kathleen.carley@cs.cmu.edu

Carnegie Mellon
LSF ARt
RESEARCH

Networks!

Fotosearch 2009 Network Art
Marc Lombardi

: African-American ®
o Puerto-Rican «__
US White

- ‘ > . S
-"3..4'.. el s ""' %

W, s‘ﬁ;“:‘-%;g;'-. e
D - |lati : Benghazi Consulate
rug using relations in Twitter Network

cASOS Hartford, CT Kathleen M. Carley, 2013

I ﬂ Steve Borgatti 2004
= LI Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU




Carnegie Mellon

Socilal Networks

A social network is a
description of the social
structure at a particular point
in time in terms of the actors,
mostly individuals or
organizations and the links
among them.

A social network indicates
the ways in which the actors
are connected through
various social familiarities
ranging from casual
acquaintance to close
familiar bonds.
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« Social Network Analysis
* Dynamic Network Analysis
e Network Science

ASII * Link Analysis
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What 1s a network?

Ties Between Nodes (links) Nodes

® \Who do you like or respect?
® People

® Association or affiliation ) )
® Units of action

mahmud_ahouhalima
darfur

nuclear

® Transfer of resources ® Coalition partners

. - - Jamal_al-fari| none Ali_mohamed
Authority lines whan_etnagehX
Jinad_mohammet_ali S N A renammed saim ® Departments
| _ b
1 A \alid_al-fauniaz
. AI I Ian Ce saudi_arabia - ahmed_hamed_ali

anas_libyface . R eso u rces

muhsin_atwah

ibrahim_eidarous . I deaS O r Ski I IS

saif_al-adel

® Substitution
adrg\mir;na&r;?n[;n_:fabdu\fa\mag\dfl . Events

=" iya_embassy_bombing_ 1998
APAMTE_EMbassy_bombing_1998

. P recedence ahmed_the_german

cape_town

® Proximity ® Nation-states

residence

Networks are ubiquitous

CASO
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Areas of Application
- Organizational

~ - =1 e Design to mitigate
ber attacks

e Case Studies

iy ensor/email
analysis
— nsitivity to Cyber
sues

2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Supporting Technologies

e Network Analytics
— Graph metrics & algorithms
— Statistical metrics & algorithms
— Simulation

e Visual Analytics
e Text Analytics
e Machine Learning
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Analysis of who communicates, influences or did /
will do what to whom - when, how, and why

SIS o
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The Network Perspective

Standard Social Network | Dynamic

Statistics Analysis Network
Analysis

Attributes Relations Relations +
Attributes

Atomistic Interdependence

Actors as Actors Actors

independent constrained and constrained and
enabled by links  enabled by links

Actor state  Actor state Actor state

matters irrelevant Impacts
perception of
and use of links

Discovery of HIV: Sexual contacts among
gay men w/ unusual cancers, traced by Bill
Darrow of the CDC

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 11
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@ April 2015

Definitions

Node
— The entity of interest (point, entity,dot, <person>)
— Mode aka Node type
Link
— relation, link, edge, connection, <friendship>
— vary in strength (weight), direction, type, confidence (another weight)
— Link type
Ego-Network
— The set of nodes directly connected to ego and the relations among them

Social Network
— A one-mode, one-link network from a single time
— Nodes are generally people

High-dimensional aka Meta-network
— Multi-mode, multi-link network

— Often geo-temporal

Path

— A path in a network between two nodes, such that no link or node is
crossed twice

Copvright © Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Simple SNA Measures

Degree Centrality Node with the most

Betweenness

Eigenvector
Centrality

Closeness

Betweenness -
Centrality

April 2015

connections

Node in the most
best paths

Needs symmetric
data

Node most
connected to other
highly connected
nodes

Node that is closest
to all other nodes

High in betweenness
but not degree
centrality

In the know

Connects groups

Strong social capital

Rapid access to all
information

Connects
disconnected groups

Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU

Identifying sources for
intel; Reducing
information flow

Typically has political
influence, but may be
too constrained to act

Identifying those who
can mobilize others

Identifying sources to
acquire/transmit
information

Go-between;
Reduction in activity
by disconnecting
groups

13
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Degree Centrality

Degree — total number of edges/ nodes ego is connected to
In Degree — total number of nodes that send edge to ego
Out Degree — total number of nodes that receive edge from

ego

Sink — 0 in degree; Source — 0 out degree

01010
10010
10001
00101
01100

April 2015

N In Out Total

B A2 2 4
A‘\é'/‘ /C B2 2 4
DXE/ C2 2 4
D2 2 4

E2 2 4

Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 14



Betweenness Centrality

e How often a node lies along the shortest path between two
other nodes :

- Computed as:  p =% Eity

1, g;j

where gij is the number of geodesic paths from i to j and gik]
IS number of those paths that pass through k

e Index of potential for

— gate-keeping, brokering, controlling the flow, and liaising between
disparate parts of network — “connects groups”

e Indicates power, access to diversity of flows, potential for
synthesizing
e Very “expensive” to compute

April 2015 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 15
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Closeness Centrality

e Measured as:
— Sum of distances to all other nodes
— Computed as marginals of symmetric geodesic distance matrix

e Closeness is an inverse measure of centrality

e Index of expected time until arrival for given node of whatever is flowing
through the network
— —Gossip network: central player hears things first

April 2015 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 16
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Eigenvector Centrality

e Node has high score if connected to many nodes that are
themselves well connected

e Computed as:

Av = Av
where A is adjacency network and V is eigenvector centrality.
V is the principal eigenvector of A

e Indicator of popularity, “in the know”
e Index of exposure, risk

e Tends to identify centers of large cliques
— Often identified as leader of self-contained group
— Leader of Leaders

April 2015 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU
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e Number of ties, expressed as percentage of the number of ordered/unordered pairs

e Number of ties / Number of possible ties
e If number of nodes = N and number of ties is M, then M/(N*(N-1)) if directed and M/((N*(N-1))/2) if
undirected

cASO S Low Density (25%) High De.nSity (39%)
® Avg. Dist. = 2.27 Avg. Dist. = 1.76

April 2015 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU 18
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Network Analytic Toolkits

«- "ORA 2.3.1f

File Edit Preferences Data Management Generate Mebworks  Analysis  Simulations  Wisualizations  Help

Rl i AA 38 -

Meta-Network Manager # X | a0 x  TIf-Meta-Network: 20110801union_timelnterval # X ‘ A0 %
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(=8 e 0885011 10501 union_Hmelnterval Filenarme |C:'|,D0u:uments and Settingsidefaulti Desktoplouti201 10801 union_timeInkerval xml ‘ [ L:.j Load. .. ]

- moa agent ; size 110 [ LéGenerate Reports,., ] [ a2, Visualize - l [ EMeasure Charts... ]

- ooo belief 1 size &

- OO0 event | size 3

Skatistics
- ooo knowledge : size 75
. . Source Count: 0

- ooo |ocation : size 186 =
- Ooo organization : size 82 Mods Class Count: 9
. 000 fesource ! size 55 Node Counk; 59z
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Ildentify: Who are the Key Players?
Or Locations, Resources ...

'

= 2

& 8 2

E % &

Recurring Top Ranked Agent - 2_5v2all

+ & @ N 2 o & - & &
Agant

Agents 286, 652, 97

In-the-Know

(total degree centrality)

Rank |Value Unscaled |Agent
1 0.181 181 652
2 0.176 176 286
3 0175 175] 97
4 0.165 165 412
5 0.158 158 502
6 0.154 154 273
7 0.139 139 246
8 0.115 115 615
9 0.111 111 829
10 0.109 109 8

repeatedly rank in
top three in the
mcasurcs.
Potcntially Influcntial
(betweenness centrality)
Rank JValue Unscaled |Agent
1] 0.0988664| 24667.2 286
2] 0.0705427| 17600.4 97
3] 0.0625256] 15600.1 502
4] 0.0609523| 15207.6 829
5] 0.0548627| 13688.2 652
6] 0.0542421| 135334 615
7] 0.0524498| 13086.2 412
8] 0.0410645[ 10245.6 501
9' 0.0306578| 7649.12 273
10' 0.0305522| 7622.78 552

\

cll"ll'r- April 2015

Drilling down... \

*ORA's Key Entity Report
shows 3 agents critical to
operations.

Narrow our focus from
set of interstitial members to)

small group of leaders.
N~

Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Overall Tweet Network

Note there are a few sources that are picked up

'—-'J-Lr- April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 21
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Retweeted Actors & Hashtags

%5 Chart Results: Agent : size 1499 EE

Save Measures

Bar Chart | Scatter Plot | Histogram | Regression | @ #morocco
Use this panel to view bar charts of measures. Right-dlick the chart for more options. ™ #algeria
Measure: |Cer1trality, Out Degree - | [hgentx Agent -
Options .
ﬁjﬂ"l (3
Show this many nodes: Sortby: Largest values first i Show names . #hnisi® #arals @. #toot

N =15, Min = 0.001113 , Max = 0.016633 , Mean = 0.004328 , Std.dev = 0.004372

Centrality, Out Degree : Agent x Agent
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150
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Benghazi Consulate

Innocence of the Muslims
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61 s Each person is embedded in many networks

RESEARCH

Informal and Formal Structure

e Security Relevance
— Formal controls access
— Informal controls social

S0S ressure
CA . p

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 24
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““Network Analysis Enables Management and

Disruetion

mahmud_abouhalima
darfur

nuclear

jamal_al-radl
wadih_el-hage L&

ali_mohamed

ahmed_hamed_ali

anas_libyface

A
vulnerability
to exploit!

ruhsin_atwah

ibrahim_eidarous
saif_al-adel

ayman_al-Zawahiri

mohammed_atef ThIS guy

adel_mohammed_abdul_ needS

Sk o ya_embassy_bombing_1993
ace%e . . B terzara_Embassy_hombing_1998 helpl
FiTfiet “greet salle - ——"C L arachi

/ s\%\
Dxygen
‘- residence

e Security Relevance 2
v

l} — Prevention of potential threats
— ldentification of potential

exploits

ahmed_the_german

cape_town

L

cASOS
ORI K
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Ego Networks

A node’s (ego’s) set of alters, the connections of ego to
alters, and the connections among the alters

'—-'J-Lr- April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Differences in Ego Networks @ Fam
for Drug Users work
Normal Person Cocaine User ‘ Friend

People with Different Roles have Different Networks

Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 27
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Terminology: Components

A subgraph S of a graph G is a component if S is maximal and
connected

If G is a digraph, then

— Sis a weak component if it is a component of the underlying
(undirected) graph

— Sis a strong component if for all dyads u,v in S, there is a path from u
tov

Finding components is the first step in analysis of large graphs
— Analyze each component separately, or discard very small components

Isolate

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Grouping Algorithms

e Aka community detection

e All good at finding cliques

e All good at ignoring isolates
e Some notion of “cohesion”

CONCOR NEWMAN | LOUVAIN | Johnson
-GIRVIN Hierarchi
cal
Exclusive  yes no yes yes no
Overlappd no yes no no yes
Bottom-up no yes yes yes yes
Top-Down yes no no yes no

Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Critical Actors are Interstitial

Jeff
Skilling

Kenneth
Lay

Tanya
Jones

Veronica
Espinoza

Jeff
Dasovich

S 2% B ___
April 2015

Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Insider Threat Example

Extracted meta-networks from texts
Semi-automated

Data organized by year

Coding is from perspective of “spy”
Roles of actors coded

Attributes of “spy” coded

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Bridge

e A tie that, If removed,

g would disconnect net

EEETEOIS © Steve Borgatti 2004
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Structural Holes

Local Betweenness

The structural hole

Ego

Few structural holes
Many structural hole

Measured by:
Burt's effective size

ﬂASII Burt's constraint

i@.‘ Everett & Borgatti's ego betweenness - This last is recommended
oril 2015 Copyright © Kathleen M. Carley, CASOS, ISR, SCS, CMU




Structural Holes
Robert took over James'job. Entrepreneurial Robert expanded
the social capital of the job by reallocating network time and energy ®
to more diverse contacts.

Itis the weak connections (tructural holes) between Robert's
s,  Ccontacts that provide his expanded social capital,
% Robertis more positioned at the crossroads of communication
¢ between social clusters within is firm and its markel,
s andsois beter positioned to craft projects and policy

o that add value across clusters.
Research shows that people i,‘
ke Robert, better posiioned for s wam oL onee IRSTTLL

entrepreneurial opportunity, are the

key lointegrating across functions and

across the people of increasingly diverse backgrounds in today's
flatter organizations. In research comparisons befween managers
ke James and Robert, it is the people like Robert who get promoted
faster, eam higher compensation, receive better performance evaluations, and perform more successfully on teams.

Slide from Ron Burt
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Manning — Lone Wolf example

open-source

Manning specific 2010

United_States_Army

Wikileaks
Julian_Assange

intelligence_analyst

United_States_Department_Of Defense Dod

Army_Counterintelligence )
Tyler_Watkins

stepmother
National_Security_Agency
Yahoo

Adrian_Lanio;
journalist '

Wired.com Kinko

FBI
MCI_Worldcom

United_States Department_of State DOS ~/Casey_Manning

Facebook

SIS o
)15 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 35



Carnegle on
e Walker — Gang example Case records/searches
(open-source)

1985-01-i¥88Rer Snyder USN

- aura Walkep
Philip Snyder M|chael Walker

Barbara Crowle Robert Hunter

Brenda Reis Whitworth
Cynthia Walker / | Allen Walker
Margaret Walker erry Whitworth

John Walk

Margaret Scaramuzzo Walker (

James Walker

VSE Corporation

Arthur Walker Grand Jury
Christopher Walker
Rita Fritsch Walker

powere; d by ORA-NelScenes

UNKNOWN-1 WalkerJehn 1
Dorthy Dobson Walke -
Sherrie Walker ’
Gary Walke

Andrea Walker

SIS o
2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 36
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Increasing betweenness during spy activities — insider starts

connecting more individuals

Walker Case Manning Case

0.095 T 0.90 T
.00 0.85 y
0.085 < 8 / B
S | 0.75 04
0.075 |- i v
o070 0.65 /
; : i
0.065 0.60 /
0.060 § i !
i 0.55 i
0.055 i /
. v 0.50 I - - e
! i Co——
4 0.050 5 | H
T £ 045 {
= 0.045 = /
0.40 f
0.040
0.035 0.35 /
i . J
0.020 030 {
oozl . /
0.020 0.20 ."II
i u
0.015 g 0.15
0,010 0.10
0.005 | L L /.\ 0.05
0.000 NV VPPTTrPT T8 PUPy 7 J. 0.00 I - a
1935 1940 1945 1950 1955 1060 1965 1970 1975 1980 1985 Manning specific 2000 Manning specific 2003 Manning specific 2006 Manning specific 2009
Date Period
|—I— Jerry Whitworth ~8 Michael Waller -k Arthur Waller —- John Walloer| -B-Bradley_Manning - Julian_Assange

CASOS

) (e )
L3 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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=% Characteristics shared and not shared by
Walker and Manning

Manning Walker with attributes

breaks_up_with_significant_other

communications_specialist ostracized

gregarious boasts intelligence_specialist

iolent
Z
mﬁgem;

good_performance
Bradley_Manning

John_Walker™
loner

verbal intimidation
homosexual

well _liked
poor_performance

married

military_service

'—-'J-Lr- pril 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 38
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Insiders examined have these characteristics

e Special characteristics
— Boastful
— Abusive or violent when provoked
— Intelligent
— Had or was in military service
— Had broken up with significant other
— Wanted to “use-the-system” for own gain
— Wanted change (money/psych change)

e Access to classified material

e Increasing betweenness over time

e Increasing structural holes

e Disrupted family network — tie strength with family decreased

e [rrelevant characteristics
— Gender
— Age
el SO (3 — Loner/outgoing

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 39
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Demos

e NetMapper  ORA

CASOS

) (e )
L3 opvright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU
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Enron — Network Anomaly Detection
e Anomaly assessment
— ﬁggit\/g identify insiders in an organization based on their recorded email
— Are different network features more useful for identification?
e ldentify features of Enron “insider-threats” and compare with other
Enron employees
— Insiders Threats will show
e greater connections outside than inside firm and that change may grow over time
* Increasing betweenness prior to events
e Structural holes prior to events
e Extracted meta-networks from email headers
— Automated
e Data organized by year
e Segmented out the Enron insiders
e Data cleaning
— Collapsed all email ids of same Enron insider into single person
s e Machine learning algorithm to identify insiders
CASO X
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Enron 2001

All Enron Messages - Transformed
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Enron Insiders are not top actors

Recurring Top Ranked Agent - Agent x Agent 2001 reduced - isolates removed

1001
a0 {|
80|
704}
604
504
404l
304}

Percent of measures

204}
URI

Agent
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1l Enron “Insiders” — those accused —

A densely connected sub-group

Insider 2001 clean v3
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Enron Comparison of Insiders

and non Insiders

Number of People Communicated with on

Average Number of Messages sent on Average
Number people Number of Messages
Enron non-insiders Enron non-insiders
Enron Insiders Total Enron Insiders Total
Enron In to Out Enron In to Out
Enron Insiders Enron Insiders
0 2 4 6 8 0 10 20 30 40 50

$0S
CAS09
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Details on Machine Learning Setup

e Algorithm: JRIP, which is based on RIPPER (Cohen 1995)
— Supervised Learning Algorithm
— Scales linearly with training instances
— Goal was to handle hundreds of thousands of examples quickly
— Roughly a thousand instances a second with our data

e Data-Cleaning:
— Nodes with multiple email addresses had been consolidated
— Distribution Lists had been removed

e We use five-fold cross-validation to evaluate performance (and generate the ROC
curve, later).

— 20% used to build classifier, 80% tested, flipping through what each 20% is used to build the
classifier.

April 2015 Copvright ©2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU 47
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=== Definitions of Machine Learning Feature
Groups

e Structural Features — Node-level network measures describing the position of
the node in the entire network

— Snapshot: These node-level network measures for a single meta-network representing a
period of time

— Summaries: Numerical summaries of these node-level network features over multiple
points in time. Count, Min, Max, Sum, Average, Median, StDev
e Message Ratios — In-Degree and Out-Degree based on messages to
employees and outsiders
— Snapshot: These in-degree and out-degree for a single collection period

— Multiple Snapshots: In-Degree and Out-Degree for multiple collection periods
represented separately (May01, OctO1, etc)

— Summaries: Numerical summaries of these ratios for multiple points in time for these
nodes. Count, Min, Max, Sum, Average, Median, StDev
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Feature Creation Summary

e Method:

— All nodes
— Structural Features: Snapshot + Message Ratio: Multiple Snapshots

e Filtering down to only organizational members is not useful
— Insiders look like other employees
— Insiders do not look like external actors

e Internal vs External Ratio very useful!

e Summaries (e.g. cumulative sums or averages) add noise features
— Network collection not regular in Enron corpus
— Executives trained to delete emails
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ROC Curve for October 2001

ROC CurviEnron October '01
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HE5R 1P Features on the ROC Curve (Alphabetical
Order)

e AuthorityCentrality TO

e CligueCount_TO

e ClusteringCoefficient_TO 04 -

e CognitiveSimilarity TO

e ColumnGiniMeansDifference TO

e Constraint_TO 03 7

e CorrelationResemblance TO

e InverseClosenessCentrality BCC 0.2 -

e InverseClosenessCentrality TO /

e 0Oct2001 InDegree TO Internal '

. m:ﬁggi_:Eggg:gg_ig_fnl_tl_emal 35% True
- e .05% False

 WeakComponentMembers BCC
CASOS

. .
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(columnGiniMeansDifference_TO <= 0.000649) 
      and (weakComponentMembers_BCC <= 5824) => Insiders=N
(May01_InDegree_TO_Full <= 5) => Insiders=N
(inInverseClosenessCentralityBCC <= 0.00457) 
      and (inInverseClosenessCentrality_TO >= 0.02997) => Insiders=N
(Oct01_InDegree_TO_Internal <= 0) 
      and (weakComponentMembers_BCC <= 10549) => Insiders=N
(inInverseClosenessCentrality_TO <= 0.036814) 
      and (cliqueCount_TO >= 2) => Insiders=N
(correlationResemblance_TO >= 0.999832) 
      and (InDegree_TO_Internal <= 23) => Insiders=N
(cognitiveSimilarity_TO <= 0.000346) 
      and (clusteringCoefficient_TO >= 0.224914) 
      and (authorityCentrality_TO >= 0.000001) => Insiders=N
(constraint_TO >= 0.066974) => Insiders=N
(columnGiniMeansDifference_TO <= 0.000649) 
      and (inInverseClosenessCentrality_TO >= 0.000162) => Insiders=N
 => Insiders=Y
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HE5R 1P Features on the ROC Curve (Alphabetical
Order)

e ColumnGiniMeansDifference TO
e InverseClosenessCentrality BCC
e |nverseClosenessCentrality TO
e Oct2001 InDegree TO_ Internal
e May2001 InDegree TO ALL

e May2001 InDegree TO Internal
 WeakComponentMembers BCC .

50% True
18% False

&
&
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"EIRIP Features on the ROC Curve (Alphabetical

Orderz

e ColumnGiniMeansDifference TO
e May2001 InDegree TO ALL

 WeakComponentMembers BCC /e_/

78% True
60% False
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Findings on Insiders — those accused

Are not “top” network actors

Form a densely connected sub-group

High level of in-group communication

Low out-group communication

Overall have many structural holes

Part of a hidden network (BCC Weak component)
Have long reach — inside and out — inverse closeness
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Symantec’s WINE telemetry data

— From ~10 million customer machines worldwide

— Use thesaurus for threat attributes
e AV: type, IPS: type, infrastructure

IP victim, IP attacker,

!a . !a threat name
IPS telemetry

v

!a IP, threat name
AV telemetry

Focus
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Attack Network

e Cyber attack network

— Avg # of attacks by a computer in country i on a computer in

country j

— (# of attacks by computers in country i on computers in country j)/

(# of computers in | * # Symantec computers in j)
— Total, infrastructure * type, (IPS)

Edge weight from
1to ] =4 /(6*3)
=0.2222

Country I | [3--{----@-----4->0 | Country j
| O
1@ > B Symantec machine
[ ] > [0 other machine
\.\
O /A/>9. ® 0 A threats
CASO L
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Non-Attack Data

ICT development index
— ICT development index [ITU 2010] that combines 11 indicators (fixed telephone lines per
100 inhabitants, mobile cellular telephone subscriptions per 100 inhabitants, international
Internet bandwidth per Internet user(bits/s), % of households with a computer, % of
households with Internet access, % of individuals using Internet, fixed broadband Internet
subscriptions per 100 inhabitants, active mobile broadband subscriptions per 100
inhabitants, adult literacy rate, secondary gross enrolment ratio, tertiary gross enrolment
ratio)
Cyber Research
— # cyber security papers during 2002-2011[SCOPUS]
Region
— Africa, Asia, Eastern European, Western European and others (includes US, Canada, N.
Zealand), Latin America
Corruption [transparency international]
— Index of corruption in the public sector
— High index value: low corruption
Software piracy rate [Business software alliance]

— Number of units of pirated software installed divided by total number of units of installed
software

GDP per capita [world bank]
Alliance Network [correlates of war]

Hostility Network network [Center for International Development & Conflict Management,
Department of Peace and Conflict Research]
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Relative Prevalence

Web attacks 1%_
trojan
m Fake B \Worm
applications virus
exploit 0
62% P 58% B unknown
W other other

Threats encountered (AV). Total = 9.75 M

Threats encountered . Total = 24.52 M

e e e e e

exploit N
exploiting
m web attacks machine
®m malicious
60% fake web page
applications other
W other
CcCA (1] Attacks encountered. Attacks transmitted.

iﬁ Total ~35.9 M Total ~35.9 M
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Web Site Threats Encountered
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Attack Network

e Cyber attack network

— Avg # of attacks by a computer in country i on a computer in

country j

— (# of attacks by computers in country i on computers in country j)/

(# of computers in | * # Symantec computers in j)
— Total, infrastructure * type, (IPS)

Edge weight from
1to ] =4 /(6*3)
=0.2222

Country I | [3--{----@-----4->0 | Country j
| O
1@ > B Symantec machine
[ ] > [0 other machine
\.\
O /A/>9. ® 0 A threats
CASO L
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Non-Attack Data

ICT development index
— ICT development index [ITU 2010] that combines 11 indicators (fixed telephone lines per
100 inhabitants, mobile cellular telephone subscriptions per 100 inhabitants, international
Internet bandwidth per Internet user(bits/s), % of households with a computer, % of
households with Internet access, % of individuals using Internet, fixed broadband Internet
subscriptions per 100 inhabitants, active mobile broadband subscriptions per 100
inhabitants, adult literacy rate, secondary gross enrolment ratio, tertiary gross enrolment
ratio)
Cyber Research
— # cyber security papers during 2002-2011[SCOPUS]
Region
— Africa, Asia, Eastern European, Western European and others (includes US, Canada, N.
Zealand), Latin America
Corruption [transparency international]
— Index of corruption in the public sector
— High index value: low corruption
Software piracy rate [Business software alliance]

— Number of units of pirated software installed divided by total number of units of installed
software

GDP per capita [world bank]
Alliance Network [correlates of war]

Hostility Network network [Center for International Development & Conflict Management,
Department of Peace and Conflict Research]
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Relative Prevalence

Web attacks 1%_
trojan
m Fake B \Worm
applications virus
exploit 0
62% P 58% B unknown
W other other

Threats encountered (AV). Total = 9.75 M

Threats encountered . Total = 24.52 M

e e e e e

exploit N
exploiting
m web attacks machine
®m malicious
60% fake web page
applications other
W other
CcCA (1] Attacks encountered. Attacks transmitted.

iﬁ Total ~35.9 M Total ~35.9 M
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Fake Application Threats Encountered
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Top Countries —
Threats Encountered (IPS)

— High ICT development

e Top countries for exploits

— Middle ICT development

e Top countries for web attacks & fake applications

All Web attack Fake application Exploit

Rank|country value |country value |country value |country value
1 United States  |1.412|S. Korea 0.957|United States  |0.424 Moldova |0.553
4 United Kingdom|1.34 |United States  |0.874 |United Kingdom|0.409|India 0.369
3 Canada 1.199|United Kingdom|0.844 |Canada 0.361|Latvia 0.309
4 Australia 1.164 |Germany 0.805|Australia 0.359|Uruguay |0.284
5 S. Korea 1.058|Canada 0.727 |Ireland 0.328|Ukraine  |0.259
6 Germany 1.042|Australia 0.706|New Zealand  |0.327|Taiwan 0.257
7 Ireland 0.97 |Turkey 0.619|Norway 0.256|Bangladesh|0.24
8 Russia 0.942|Netherlands 0.608 |Vatican 0.239|Mali 0.232
9 Italy 0.937|Russia 0.585|Sweden 0.217|Belarus 0.226
10 |Moldova 0.869|Belgium 0.581 |Belgium 0.212|Kazakhstan|0.223
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Top Countries —
Attacks Encountered (1PS)

e Top countries for web attacks & fake applications
— High ICT development

e Top countries for exploits
— Middle ICT development

All Exploit Web attacks Fake application
Rank |country value |country value |country value|country value
1 Moldova 28.77 | Moldova 28.42 |Germany 1.64 |United States  |0.92
2 India 16.56|India 16.22|S. Korea 1.64 |United Kingdom |0.83
3 Taiwan 15.91 | Taiwan 15.75|United States  |1.29 |Canada 0.76
4 Nicaragua 13.3 |Nicaragua 13.02 |United Kingdom |(1.25 |Australia 0.68
2] Latvia 13.05|Latvia 12.58|Netherlands 1.06 |Ireland 0.59
6 Italy 11.13 |Italy 10.09|Canada 0.99 |New Zealand |0.56
7 Israel 10.1 |Israel 0.54 |Australia 0.99 |Norway 0.46
8 Uruguay 8.41 |Urugnay 8.23 |Russia 0.83 |Switzerland 0.4
9 Bosnia & Herzegovina|7.45 |Bosnia & Herzegovina|6.86 |Belgium 0.81 |Belgium 0.38
10 |Georgia 7.07 |Georgia 6.54 |Italy 0.79 |Sweden 0.36
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Exploits Transmitted — “Purportedly”

Belarus
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Exploits: Countries that act as wayports

Latvia
Moldova
Georgia

_‘[w'-i Croatia

'Dem. Rep of Congo
Angola
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Findings on Global Mapping

 Web Attacks Increasing
e \Wayport countries
— High corruption
— Unsophisticated IT infrastructure
— Include some in Russia sphere of influence

e Third world countries may be more susceptible to wide range of attacks
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Resiliency

__ T
How should organizations be structured to mitigate
the impact of cyber attacks?

e Approach:
— Empirically Grounded Computer Simulation

 Why are we unique:
— Model both the human side and the information technology side
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Modeling the Organization

e Organizations have e Interactions occur e Organizations with
multiple functions each across multiple sensitive information
necessary for modalities have clearance or
operation control systems for

Soclal Network protected information

Sﬁ‘iﬁ) / Has Clearance:
+

E Access Network The Organization
+

Human-Mediated IT
Network

Operations

No Clearance:
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H== USAF AOC — a cross between Divisions and

Functional Areas

Overall 155
number pax
of people [ - [ _—
) —_— 1 _— —
N [ _ [ _—
] _— — _— —
AOC:401 — —_ — —
[ ] ] [ ] ]
 Space | [ - [ -
Extrapolated - o - —
from Automap = = = _
generated ——
model from Airspace Management - - - -
doctrinal = = = -
 Weather |
references emer — — = E—
(AFI 13-1 [ - [ _—
AOC v3, | | | ]
AFTTP 3-3.2 [ - - -
AOC Nov '07, | | | | | |
AFD 2-1.17 [ - [ _—
May '01) - | _— |
[ - [ -
] ] [ ]
[ - [ _—
| | ] | ]
Special Technical Operations - - [ -
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Public Affairs [ - [ -
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Kex Entities iIn USAF AOC

[

L T A S, |
o1 =

(]
L] =

/

Paercent of measures

e For USAF Regional AOC

— TBMCS, is in top 10 list
~60% of the agent-relevant

measures (13 of 22) (Lanham
et al, 2011b)

— E.g., Betweeness Centrality

/ GCCS
/ JADOCS (across all node pairs that

have a shortest path
containing v, the
percentage that pass
through V) (Freeman, 1979)

IT_System

CASOS

) (e )
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Most Attacks are Minimally Disruptive

e Qur models have shown that most attacks
cause minimal disruption to the

organization’s processes X Wide-Spread DoS
e Supported by the empirical literature. )ﬁ;
e We now focus on severe attacks and on 2

attack combinations. X

April 2015 Copyright © 2015 Kathleen M. Carley, CASOS, ISR, SCS, CMU

74



Carnegie Mellon

Inadvertent Leaks

e Inadvertent leaks occur when proprietary
or classified information is transferred to sy
those who should not have access, s.t. the = o he
transfer may have occurred without “

explicit intent
e |nadvertent leaks are:
— Inevitable

— More likely in higher performing
organizations

— More likely in certain network topologies

— Prevention requires heedful interaction and
acting as a high reliability organization

2 Linear = 0.447

Inadvertent Leakage, Pre-Attack

50.00—

.00~ I I I I I ! ! I
.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

Equillibrium Performance

CASO
ﬁ ﬁ
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1S 1 FENA
Topologies

e Social network — people to people
— Functional Mesh: members of each functional area may interact with each other

— Hierarchy: 3-4 levels with each manager having 3-7 subordinates
— Matrix: Hierarchy + cross-functional teams where members int%ﬁ%s functional
areas

e |T Networks — system to system

— Stove-pipe: All Decision Support IT Systems are autonomous, .‘
be cross-linked with each other except through interaction with‘pee

et intended to

— Cloud: All Decision Support IT Systems are allowed to create cross-linkages as desired.

&
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Attacks

No Attacks

Reliability

— Non-Severe — IT support system is unavailable

— Severe — all IT support systems are unavailable

Integrity

— Non-Severe — compromised IT system has ingested new non-relevant data

— Severe - introduce new non-relevant but interesting information to the organization
through all IT systems

Reliability & Integrity
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Impact of Attacks and Topology

e Hierarchical Siloed organizations least
prone to inadvertent leaks and

performance will be least degraded by
attacks

e Combined attacks most harmful

e (Cloud is more conducive to inadvertent

Change in Leakage
from baseline

leeks & | 7\
------------------------------------------------------------------ FM-C
..................................................... H-C -
None SR : . eé.o‘%
SR+SI sl si4sp H-S «\‘O\o \0‘9‘
Attack Type w0 ﬂ‘o?o
&
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lllustrative Results

% Saturation of Plan Knowledge

!

!
I
|
/
|

3 25 30 40 50 &0 7O B0 90 100
imulation Time (% of Run)

e Most organizations resilient to small and medium attaCKs
e Integrity attacks more devastating than DOS attacks
— shown Air Operations Command (AQC).
e Resiliency is enhanced by redundancy
e Resiliency is increased by coordination

« When only a few systems face an integrity attack, key decision makers are
less impacted than others
— Possibly leading to feeling attack is not serious
— Contributes to resiliency as key personnel are able to operate

 When many systems are attacked key decision makers are more impacted
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Network Analytics

e Useful for insider threat

e Supports analysis of high dimensional networks
e Supports analysis of big data

e Supports social media analytics

e Valuable methodology for Science of Security
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