
https://uberspark.org | https://uberxmhf.org | https://hypcode.org

überSpark:
Practical, Provable, End-to-End Guarantees on

Commodity Heterogenous Interconnected Computing (CHIC) Platforms

Amit Vasudevan
(Software Engineering Institute/Carnegie Mellon University)

[Collaborators: Jeff Boleng (SEI/CMU), Anton Dimov Hristozov (SEI/CMU), Bruce Krogh (SEI/CMU), Raffaele
Romagnoli (ECE/CMU), Ruben Martins (CSD/CMU), Atharv Saathe (ECE/CMU), Delbert Christman (Autonodyne LLC),

Petros Maniatis (Google Research)]

Freedom is the
right of all
sentient beings

https://uberspark.org/
https://uberxmhf.org/
https://hypcode.org/

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

CHIC-centric Cyber (Physical) Systems

2

CHIC-centric CPS Implementations
__demand__ fairly strong end-to-end
assurance for security, control,

timeliness, and correctness

Cost-
effective

Innocuous
(cf. NASA)

Effective solution must meet these Goals

+

Provable

+

Platforms
Development
Pedigree

Software
Layers

Configuration &
Interactions

Ownership
CHIC Stack

Heterogeneity =
Challenge

+ + + +

CPS Applications

Middleware

Sensor/Actuator

Drivers

OS Kernel

Hypervisors

Hardware (HW)

Data

Code
Comms.

Control

Flow
Data

Code

Comms.

Control

Flow

 Introduction SoA/SoP Architecture

 Foundational Steps Present Activities Summary

“Neither impossible,
nor impassable!”

-- Optimus Prime, TF

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

State-of-the-Art/Practice (SoA/SoP) and Shortcomings

3

• Formally verified OS kernels
(e.g., seL4, certiKOS,
Ironclad. Verisoft etc.)

• Focus is on verification methodology;
written from scratch implementations

• Treat CHIC-stack as monolith (e.g. run
as VM) towards isolation property

• Steep learning curve and (re-
)verification cost for extensions and
other properties

• Minimal sensor/actuator device/driver
support; verification methodology does
not include devices/drivers (e.g.,
HACMS/seL4)

SoA

• Testing
(functional,
integration,
security
etc.)

• Cannot
provide
complete
coverage
w.r.t a given
functional or
security
requirement

SoP

Platforms
Development
Pedigree

Software
Layers

Configuration &
Interactions

Ownership
CHIC Stack

Heterogeneity =
Challenge

+ + + +

CPS Applications

Middleware

Sensor/Actuator

Drivers

OS Kernel

Hypervisors

Hardware (HW)

Data

Code
Comms.

Control

Flow
Data

Code

Comms.

Control

Flow

• Hardware/Software
security kernels
(e.g., micro-
kernels, MILS,
separation-kernels,
hypervisors)

• Not formally verified

• Isolated components can
still be exploited

• No privileged
disaggregation, kernel
themselves are prone to
vulnerabilities

SoA

 Introduction SoA/SoP Architecture

 Foundational Steps Present Activities Summary

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

überSpark Architecture Overview

4

Amit Vasudevan, Petros Maniatis, and Ruben Martins: “überSpark: Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing Platforms”. ACM SIGOPS Operating Systems Review Journal Rev. 54-1, 2020

• üobjects: design time,
singleton object abstraction
for exclusive resource guards
with secure interfaces

• üobject collection: runtime,
protected group of üobjects
with
• verified root-of-trust
(vRoT)

• secure call routing

• Assume-Guarantee (AG)
reasoning on CHIC stack:
meshes unverified components
and verified üobjects

• Flexible implementation on platform and CHIC-
stack layer of choice
• app., kernel, driver subsystems

• Retrofit at fine granularity
• containers, processes, portions of code

• CHIC-AG reasoning allows incremental,
composable verification in developer friendly
manner

• Automated foundational properties (memory
integrity, control-flow integrity, memory
safety)

• üobject specific properties (e.g., crypto)

• Principled interfaces and resource closure
allow state-of-the-art verification techniques
on multi-threaded üobject executions

Cost-
effective

Innocuous
(cf. NASA)

+

Provable

+

 Introduction SoA/SoP Architecture

 Foundational Steps Present Activities Summary

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

üobject

5

• Design time singleton object abstraction
guarding exclusive indivisible system
resources

• Principled entry, interruption, legacy
code invocations and uobject invocations

• Execution trace respecting program control flow
enables use of state of the art program
verification tools

• Facilitate AG reasoning and composition

• Call-return interfacing
• Handle various CHIC programming idioms

• Resource interface Confinement
• Resource protection and access control

• Support shared memory concurrency and
linearizability multithreaded execution and
reasoning

 Foundational Steps Present Activities Summary

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

üobject Collections

6

• Runtime abstractions that comprise a set
of uobjects sharing a common memory space
within a CHIC stack layer

• Bootstrapped by primes (coming up!) that
form the root-of-trust entities

• Bridged via sentinel abstractions
• Enforce call routings

• Enable logical privilege separation

• Uobject caller/callee mediation

• Legacy component invocation

• Both within and across uobject collections

 Foundational Steps Present Activities Summary

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

Primes

7

• Special collection of üobjects
responsible for boot-strapping üobject
execution within a given collection in a
protected manner

• Form Root-of-Trust entities

• Can employ different isolation mechanisms
• Hardware assisted containerization

• Software Fault Isolation (SFI)

• Setup üobject sentinels

• Initialize üobject collection CPUs,
operating stacks and policies before
kick-starting uobject interactions within
the collection

 Foundational Steps Present Activities Summary

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

üobject Verification Bridge

8

 Foundational Steps Present Activities Summary

• Facilitates Assume-Guarantee (AG) style reasoning
on the CHIC stack

• Üobject base invariants

• Uobject specific properties

• Base invariants
• Allow reasoning about uobjects in compositional manner

• Designed to be verified automatically

• Invariants proven via combination of Proof
Assumptions on Hardware (PAH) and Proof Obligations
on Code (POC)

• Bridge high-level abstract language (BAL)
• Abstracts Invariants, execution semantics and hardware model

• Specifications corresponding to verification tool

• Prove uobject specific properties via variety of
verification tools

 Introduction SoA/SoP Architecture

Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, Anupam Datta. “überSpark: Enforcing Verifiable Object
Abstractions for Automated Compositional Security Analysis of a Hypervisor”. USENIX Security Symposium, 2016

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

CHIC-centric CPS: Modular Provable End-to-End Guarantees

9

 Foundational Steps Present Activities Summary

Prime

Actuator
Hardware +
Firmware

Prime üobject collection (RoT)

Linux/VxWorks/
Windows

Prime

Sensor
Hardware +
Firmware

Controller
app

Bus Driver
(STD1553,
Ethernet,

etc.)

CPS Mission Controller

Limiting Switches
MCU

GPS Sensor MCUIR Sensor MCU

Motors MCU

Prime

Sensor
Hardware +
Firmware

Prime

Actuator
Hardware +
Firmware

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

Foundational Steps: Verified RoT (Prime)

10

(Verified) Open-source Micro-
Hypervisor Root-of-Trust:

überXMHF
(https://uberxmhf.org)

• Spatial Isolation
• Temporal Isolation
• Mediation
• Attestation

 Foundational Steps Present Activities Summary

2016
überXMHF x86

automated
compositional

verification
with Frama-C
and Compcert

2013

eXtensible
Micro-Hypervisor

Framework
(XMHF) x86
automated

verification with
CBMC

2018

überXMHF
ARMv8 on
low-cost
platforms

(Raspberry
Pi-3)

2019

2020

überXMHF
Trusted Edge

Security
Gateway

extension for
IoT Security

IEEE S&P

USENIX

Security

IEEE Euro S&P

[Best Paper]

IEEE RTCAS

USENIX

HotEdge

überXMHF
ARMv8 hyper-

scheduler
extension for
mixed-trust
real-time

computing

2021

IEEE RTNS

überXMHF
ARMv8 hyper-

scheduler
extension

timing
verification

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

CHIC-centric CPS: Formally Verified Trusted Path

11

 Foundational Steps Present Activities Summary

Integrity protection of the CPS application, sensor hardware/driver, root-
of-trust logic with trusted path (control and data flow) between them

Anton Hristozov, Amit Vasudevan, Bruce Krogh, Raffaele Romagnoli, Atharv Saathe, Ethan Joseph, Ruben Martins: “A Low-cost,
Highly-Customizable Security Platform for Robotics”. Submitted to the IEEE Intelligent Robot and Systems (IROS), 2021

CPS Application

Middleware

Sensor/Actuator Drivers

OS Kernel

HW

vRoot-of-Trust

HW

Cost-
effective

Innocuous
[9]

+

Provable

+

CPS Applications

Middleware

Sensor/Actuator Drivers

OS Kernel

Hypervisors

Hardware (HW)

Data

Code

Comms.

Control

Flow

• CHIC-centric CPS Platform: Off-the-
shelf (Amazon) Raspberry Pi3 Rover

• überXMHF micro-hypervisor vRoT

• üobjects realized on existing CPS
application and Linux I2C drivers

• < 2% runtime overhead; 6 person
weeks of effort

• Can complete mission even in
presence of active attack!

DEMO: https://forums.uberspark.org/t/uapp-
picar-s-demonstration-video-protecting-
against-memory-attacks/281

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

Present Activities and Roadmap

12

• üobject Programming Framework
• Enforce üobject abstraction within any existing C & Assembly codebase for AG
reasoning on CHIC-stack

• Handle common programming idioms for apps, drivers and OS kernel

• Event-driven üobject executions and trusted-path scaling

• Modular, Secure, and Performant CPS Control Architectures
• How should CPS missions control be architected/re-architected to get provable
control, security and information-flow guarantees

• CHIC-AG reasoning system model and proof mechanization
• Tri-fecta property for AG reasoning supporting interruptible executions across
CHIC-stack layers (user, kernel, RoT)

• Properties proven on TLA+ model discharged automatically on code

• Partial equivalence

 Foundational Steps Present Activities Summary

 Introduction SoA/SoP Architecture

Practical, Provable, End-to-End Guarantees on Commodity
Heterogenous Interconnected Computing (CHIC) Platforms

/ 14Vasudevan et. al. überSpark

überSpark: Summary

13

 Foundational Steps Present Activities Summary

• Modular Provable Guarantees
• Only focus on components and corresponding
üobjects contributing to the guarantees

• Adding a new üobject does not require re-
verification of already verified üobjects

• Might require additional meta reasoning (AG
composition rules) at the verification bridge

• Developer Friendly programmatic
abstraction and verification

• Commodity compatibility
• Existing code on disparate platforms

 Introduction SoA/SoP Architecture

Cost-
effective

Innocuous
(cf. NASA)

+

Provable

+ “Neither impossible, nor impassable!”
-- Optimus Prime, TF

https://uberspark.org | https://uberxmhf.org | https://hypcode.org

Questions?

Amit Vasudevan
(Software Engineering Institute/Carnegie Mellon University)

Freedom is the
right of all
sentient beings

überSpark:
Practical, Provable, End-to-End Guarantees on

Commodity Heterogenous Interconnected Computing (CHIC) Platforms

https://uberspark.org/
https://uberxmhf.org/
https://hypcode.org/

