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CHIC-centric Cyber (Physical) Systems
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CHIC-centric CPS Implementations 
__demand__ fairly strong end-to-end 
assurance for security, control, 

timeliness, and correctness

Cost-
effective

Innocuous 
(cf. NASA)

Effective solution must meet these Goals
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“Neither impossible, 
nor impassable!”

-- Optimus Prime, TF
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State-of-the-Art/Practice (SoA/SoP) and Shortcomings

3

• Formally verified OS kernels 
(e.g., seL4, certiKOS, 
Ironclad. Verisoft etc.)

• Focus is on verification methodology;
written from scratch implementations

• Treat CHIC-stack as monolith (e.g. run 
as VM) towards isolation property

• Steep learning curve and (re-
)verification cost for extensions and 
other properties

• Minimal sensor/actuator device/driver 
support; verification methodology does 
not include devices/drivers (e.g., 
HACMS/seL4)

SoA

• Testing 
(functional, 
integration, 
security 
etc.)

• Cannot 
provide 
complete 
coverage 
w.r.t a given 
functional or 
security 
requirement
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• Hardware/Software 
security kernels 
(e.g., micro-
kernels, MILS, 
separation-kernels, 
hypervisors)

• Not formally verified

• Isolated components can 
still be exploited

• No privileged 
disaggregation, kernel 
themselves are prone to 
vulnerabilities

SoA
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überSpark Architecture Overview
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Amit Vasudevan, Petros Maniatis, and Ruben Martins: “überSpark: Practical, Provable, End-to-End Guarantees on Commodity 
Heterogenous Interconnected Computing Platforms”. ACM SIGOPS Operating Systems Review Journal Rev. 54-1, 2020

• üobjects: design time, 
singleton object abstraction 
for exclusive resource guards 
with secure interfaces

• üobject collection: runtime, 
protected group of üobjects 
with
• verified root-of-trust 
(vRoT)

• secure call routing

• Assume-Guarantee (AG) 
reasoning on CHIC stack: 
meshes unverified components 
and verified üobjects

• Flexible implementation on platform and CHIC-
stack layer of choice
• app., kernel, driver subsystems

• Retrofit at fine granularity
• containers, processes, portions of code

• CHIC-AG reasoning allows incremental, 
composable verification in developer friendly 
manner

• Automated foundational properties (memory 
integrity, control-flow integrity, memory 
safety)

• üobject specific properties (e.g., crypto)

• Principled interfaces and resource closure 
allow state-of-the-art verification techniques 
on multi-threaded üobject executions

Cost-
effective

Innocuous 
(cf. NASA)
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üobject
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• Design time singleton object abstraction 
guarding exclusive indivisible system 
resources

• Principled entry, interruption, legacy 
code invocations and uobject invocations

• Execution trace respecting program control flow 
enables use of state of the art program 
verification tools

• Facilitate AG reasoning and composition

• Call-return interfacing
• Handle various CHIC programming idioms

• Resource interface Confinement
• Resource protection and access control

• Support shared memory concurrency and 
linearizability  multithreaded execution and 
reasoning

 Foundational Steps  Present Activities  Summary

 Introduction  SoA/SoP  Architecture 
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üobject Collections
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• Runtime abstractions that comprise a set 
of uobjects sharing a common memory space 
within a CHIC stack layer

• Bootstrapped by primes (coming up!) that 
form the root-of-trust entities

• Bridged via sentinel abstractions
• Enforce call routings

• Enable logical privilege separation

• Uobject caller/callee mediation

• Legacy component invocation

• Both within and across uobject collections

 Foundational Steps  Present Activities  Summary

 Introduction  SoA/SoP  Architecture 
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Primes
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• Special collection of üobjects 
responsible for boot-strapping üobject 
execution within a given collection in a 
protected manner

• Form Root-of-Trust entities

• Can employ different isolation mechanisms
• Hardware assisted containerization

• Software Fault Isolation (SFI)

• Setup üobject sentinels

• Initialize üobject collection CPUs, 
operating stacks and policies before 
kick-starting uobject interactions within 
the collection

 Foundational Steps  Present Activities  Summary

 Introduction  SoA/SoP  Architecture 
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üobject Verification Bridge
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 Foundational Steps  Present Activities  Summary

• Facilitates Assume-Guarantee (AG) style reasoning 
on the CHIC stack

• Üobject base invariants

• Uobject specific properties

• Base invariants
• Allow reasoning about uobjects in compositional manner

• Designed to be verified automatically 

• Invariants proven via combination of Proof 
Assumptions on Hardware (PAH) and Proof Obligations 
on Code (POC)

• Bridge high-level abstract language (BAL)
• Abstracts Invariants, execution semantics and hardware model

• Specifications corresponding to verification tool

• Prove uobject specific properties via variety of 
verification tools

 Introduction  SoA/SoP  Architecture 

Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, Anupam Datta. “überSpark: Enforcing Verifiable Object 
Abstractions for Automated Compositional Security Analysis of a Hypervisor”. USENIX Security Symposium, 2016
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CHIC-centric CPS: Modular Provable End-to-End Guarantees
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 Foundational Steps  Present Activities  Summary
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Foundational Steps: Verified RoT (Prime)

10

(Verified) Open-source Micro-
Hypervisor Root-of-Trust: 

überXMHF
(https://uberxmhf.org)

• Spatial Isolation
• Temporal Isolation
• Mediation
• Attestation

 Foundational Steps  Present Activities  Summary

2016
überXMHF x86 

automated 
compositional 

verification 
with Frama-C 
and Compcert

2013

eXtensible
Micro-Hypervisor 

Framework 
(XMHF) x86 
automated 

verification with 
CBMC

2018

überXMHF
ARMv8 on 
low-cost 
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(Raspberry 
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CHIC-centric CPS: Formally Verified Trusted Path
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 Foundational Steps  Present Activities  Summary

Integrity protection of the CPS application, sensor hardware/driver, root-
of-trust logic with trusted path (control and data flow) between them

Anton Hristozov, Amit Vasudevan, Bruce Krogh, Raffaele Romagnoli, Atharv Saathe, Ethan Joseph, Ruben Martins: “A Low-cost, 
Highly-Customizable Security Platform for Robotics”. Submitted to the IEEE Intelligent Robot and Systems (IROS), 2021
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[9]
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• CHIC-centric CPS Platform: Off-the-
shelf (Amazon) Raspberry Pi3 Rover 

• überXMHF micro-hypervisor vRoT

• üobjects realized on existing CPS 
application and Linux I2C drivers

• < 2% runtime overhead; 6 person 
weeks of effort

• Can complete mission even in 
presence of active attack!

DEMO: https://forums.uberspark.org/t/uapp-
picar-s-demonstration-video-protecting-
against-memory-attacks/281

 Introduction  SoA/SoP  Architecture 
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Present Activities and Roadmap
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• üobject Programming Framework
• Enforce üobject abstraction within any existing C & Assembly codebase for AG 
reasoning on CHIC-stack

• Handle common programming idioms for apps, drivers and OS kernel

• Event-driven üobject executions and trusted-path scaling

• Modular, Secure, and Performant CPS Control Architectures
• How should CPS missions control be architected/re-architected to get provable 
control, security and information-flow guarantees

• CHIC-AG reasoning system model and proof mechanization
• Tri-fecta property for AG reasoning supporting interruptible executions across 
CHIC-stack layers (user, kernel, RoT)

• Properties proven on TLA+ model  discharged automatically on code

• Partial equivalence

 Foundational Steps  Present Activities  Summary

 Introduction  SoA/SoP  Architecture 
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überSpark: Summary
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 Foundational Steps  Present Activities  Summary

• Modular Provable Guarantees
• Only focus on components and corresponding 
üobjects contributing to the guarantees

• Adding a new üobject does not require re-
verification of already verified üobjects

• Might require additional meta reasoning (AG 
composition rules) at the verification bridge

• Developer Friendly programmatic 
abstraction and verification

• Commodity compatibility
• Existing code on disparate platforms

 Introduction  SoA/SoP  Architecture 

Cost-
effective

Innocuous 
(cf. NASA)
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+ “Neither impossible, nor impassable!”
-- Optimus Prime, TF
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(Software Engineering Institute/Carnegie Mellon University)
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