Advanced Persistent Threats Detection based on Deep Learning Approach
Author
Abstract

Advanced Persistent Threats (APTs) have been a major challenge in securing both Information Technology (IT) and Operational Technology (OT) systems. APT is a sophisticated attack that masquerade their actions to navigates around defenses, breach networks, often, over multiple network hosts and evades detection. It also uses “low-and-slow” approach over a long period of time. Resource availability, integrity, and confidentiality of the operational cyber-physical systems (CPS) state and control is highly impacted by the safety and security measures in place. A framework multi-stage detection approach termed “APT$_\textrmDASAC$” to detect different tactics, techniques, and procedures (TTPs) used during various APT steps is proposed. Implementation was carried out in three stages: (i) Data input and probing layer - this involves data gathering and pre-processing, (ii) Data analysis layer; applies the core process of “APT$_\textrmDASAC$” to learn the behaviour of attack steps from the sequence data, correlate and link the related output and, (iii) Decision layer; the ensemble probability approach is utilized to integrate the output and make attack prediction. The framework was validated with three different datasets and three case studies. The proposed approach achieved a significant attacks detection capability of 86.36\% with loss as 0.32\%, demonstrating that attack detection techniques applied that performed well in one domain may not yield the same good result in another domain. This suggests that robustness and resilience of operational systems state to withstand attack and maintain system performance are regulated by the safety and security measures in place, which is specific to the system in question.

Year of Publication
2023
Date Published
may
URL
https://ieeexplore.ieee.org/document/10128062
DOI
10.1109/ICPS58381.2023.10128062
Google Scholar | BibTeX | DOI