Enhancing Performance of Compressive Sensing-based State Estimators using Dictionary Learning
Author
Abstract

Smart grids integrate computing and communication infrastructure with conventional power grids to improve situational awareness, control, and safety. Several technologies such as automatic fault detection, automated reconfiguration, and outage management require close network monitoring. Therefore, utilities utilize sensing equipment such as PMUs (phasor measurement units), smart meters, and bellwether meters to obtain grid measurements. However, the expansion in sensing equipment results in an increased strain on existing communication infrastructure. Prior works overcome this problem by exploiting the sparsity of power consumption data in the Haar, Hankel, and Toeplitz transformation bases to achieve sub-Nyquist compression. However, data-driven dictionaries enable superior compression ratios and reconstruction accuracy by learning the sparsifying basis. Therefore, this work proposes using dictionary learning to learn the sparsifying basis of smart meter data. The smart meter data sent to the data centers are compressed using a random projection matrix prior to transmission. These measurements are aggregated to obtain the compressed measurements at the primary nodes. Compressive sensing-based estimators are then utilized to estimate the system states. This approach was validated on the IEEE 33-node distribution system and showed superior reconstruction accuracy over conventional transformation bases and over-complete dictionaries. Voltage magnitude and angle estimation error less than 0.3% mean absolute percentage error and 0.04 degree mean absolute error, respectively, were achieved at compression ratios as high as eight.

Year of Publication
2022
Conference Name
2022 IEEE International Conference on Power Systems Technology (POWERCON)
Google Scholar | BibTeX