Providing Local Resilience to Vulnerable Areas in Robotic Networks | |
---|---|
Author | |
Abstract |
We study how information flows through a multi-robot network in order to better understand how to provide resilience to malicious information. While the notion of global resilience is well studied, one way existing methods provide global resilience is by bringing robots closer together to improve the connectivity of the network. However, large changes in network structure can impede the team from performing other functions such as coverage, where the robots need to spread apart. Our goal is to mitigate the trade-off between resilience and network structure preservation by applying resilience locally in areas of the network where it is needed most. We introduce a metric, Influence, to identify vulnerable regions in the network requiring resilience. We design a control law targeting local resilience to the vulnerable areas by improving the connectivity of robots within these areas so that each robot has at least 2F+1 vertex-disjoint communication paths between itself and the high influence robot in the vulnerable area. We demonstrate the performance of our local resilience controller in simulation and in hardware by applying it to a coverage problem and comparing our results with an existing global resilience strategy. For the specific hardware experiments, we show that our control provides local resilience to vulnerable areas in the network while only requiring 9.90% and 15.14% deviations from the desired team formation compared to the global strategy. |
Year of Publication |
2022
|
Conference Name |
2022 International Conference on Robotics and Automation (ICRA)
|
Google Scholar | BibTeX |