Security Shading Generation of Logo Image Based on Neural Style Transfer
Author
Abstract

Neural Style Transfer - With the development of economical society, the problem of product piracy security is becoming more and more serious. In order to protect the copyright of brands, based on the image neural style transfer, this paper proposes an automatic generation algorithm of anti-counterfeiting logo with security shading, which increases the difficulty of illegal copying and packaging production. VGG19 deep neural network is used to extract image features and calculate content response loss and style response loss. Based on the original neural style transfer algorithm, the content loss is added, and the generated security shading is fused with the original binary logo image to generate the anti-counterfeiting logo image with higher recognition rate. In this paper, the global loss function is composed of content loss, content response loss and style response loss. The L-BFGS optimization algorithm is used to iteratively reduce the global loss function, and the relationship between the weight adjustment, the number of iterations and the generated anti-counterfeiting logo among the three losses is studied. The secret keeping of shading style image used in this method increases the anti-attack ability of the algorithm. The experimental results show that, compared with the original logo, this method can generate the distinguishable logo content, complex security shading, and has convergence and withstand the attacks.

Year of Publication
2022
Date Published
oct
Publisher
IEEE
Conference Location
Hamburg, Germany
ISBN Number
978-1-66546-399-7
URL
https://ieeexplore.ieee.org/document/10071421/
DOI
10.1109/AIAM57466.2022.00076
Google Scholar | BibTeX | DOI