Advancing Security and Privacy of Bluetooth IoTs via Formal Protocol Analysis

Zhiqiang Lin zlin@cse.ohio-state.edu

01/11/2024

Outline

- Introduction
- 2 Background
- Our Prior Works
- Proposed Research

Outline

- Introduction
- 2 Background
- Our Prior Works
- Proposed Research

What is Bluetooth Low Energy

Power Consumption: High
Communication Distance: Short (10+ m)

Bluetooth Low Energy Applications

The goal of this project is to systematically uncover the attacks via formal methods

Outline

- Introduction
- 2 Background
- Our Prior Works
- Proposed Research

Mathematical Proof: A Simple Example

Assume a set of even integers

$$E=\{...,-2,0,2,4,...\}$$

And a set of odd integers

$$O = \{..., -1, 1, 3, 5, ...\}$$

Property (Lemma)

P = "Elements of E and O are distinct"

Math Algebra

$$E = 2x \ for \ x \in Integer$$

$$O = 2y + 1$$
 for $y \in Integer$

Proof by Contradiction

not P = "There exist some common elements among E and O"

Proof

Start with assuming for some \boldsymbol{x} and \boldsymbol{y}

$$2x = 2y + 1$$
 holds true

$$\Rightarrow 2(x-y)=1$$

Mathematical Proof: A Simple Example

Possible Sub-Cases of X-Y	Generally known axioms (Generalized Constraint Resolution Methods)	applying axioms to $2(x-y) = 1$	Conclusion (Contradicting all not P system states)
0	0 is the only neutral difference of Integers	2*0=1	Contradict
negatives	all negatives differences of integers are -1 or less {, -3, -2, -1}	2*(-1 or less)= 1	Contradict
positive	all positive differences of Integers are 1 or more $\{1, 2, 3,\}$	2*(1 or more)= 1	Contradict

How does Protocol Verification (Tamarin) Work?

- Dec(Enc(msg, key)) = msg
- **Sign**(msg, privKey) = **Verify**(msg, pubKey)
- Adversary Replay

- Find next proof requirements
- Choose which SAT problems to solve first
- Convert problem algebra theory into SAT problems

$$X_1 \wedge X_2 \wedge X_3$$

Does SAT problem have a solution?

How does Protocol Verification (Tamarin) Work?

Identity Resolving Key (irk,)

Identity Resolving Key (irk.)

Identity Resolving Key (irk,)

(I) RPA Generation

Identity Resolving Key (irk,)

Identity Resolving Key (irk,)

(I) RPA Generation

 $rpa_n = prand_{24}||H_{24}(Prand_{24}||irk_p)|$

Identity Resolving Key (irk,)

Identity Resolving Key (irk,)

.....

Identity Resolving Key (irk,)

Identity Resolving Key (irk_c)

(II) RPA Resolution

Identity Resolving Key (irk_o)

Identity Resolving Key (irk_c)

(II) RPA Resolution

rand	Hash	
0x003 (22bits)	3 (22bits) 0x0004 (24bits)	
	0x003 (22bits)	

Identity Resolving Key (irk,)

Identity Resolving Key (irk,)

Outline

- 1 Introduction
- 2 Background
- Our Prior Works
- 4 Proposed Researc

Our Downgrade Attacks against Bluetooth Low Energy [USENIX'20]

Our Downgrade Attacks against Bluetooth Low Energy [USENIX'20]

Our Downgrade Attacks against Bluetooth Low Energy [USENIX'20]

The Tested BLE devices

MITM attack against BLE keyboards

CVE-2020-9770

NO.	Time	Source	Destination	ТҮРЕ
1	00:00:04	58:D7:8E:C7:8e:31	Broadcast	ADV_IND

NO.	Time	Source	Destination	TYPE
1	00:00:04	58:D7:8E:C7:8e:31	Broadcast	ADV_IND
2	00:00:08	7e:D7:8E:C7:8e:51	58:D7:8E:C7:8e:31	SCAN_REQ
3	00:00:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP

7e:D7:8E:C7:8e:51

NO.	Time	Source	Destination	ТҮРЕ
1	00:00:04	58:D7:8E:C7:8e:31	Broadcast	ADV_IND
2	00:00:08	7e:D7:8E:C7:8e:51	58:D7:8E:C7:8e:31	SCAN_REQ
3	00:00:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP
4	00:00:16	4f:b7:8E:C7:8e:38	58:D7:8E:C7:8e:31	SCAN_REQ
5	00:00:24	58:D7:8E:C7:8e:31	Broadcast	ADV_IND

NO.	Time	Source	Destination	TYPE
1	00:00:04	58:D7:8E:C7:8e:31	Broadcast	ADV_IND
2	00:00:08	7e:D7:8E:C7:8e:51	58:D7:8E:C7:8e:31	SCAN_REQ
3	00:00:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP
4	00:00:16	4f:b7:8E:C7:8e:38	58:D7:8E:C7:8e:31	SCAN_REQ
5	00:00:24	58:D7:8E:C7:8e:31	Broadcast	ADV_IND

.....

	200	00:15:08	73:D7:8E:C7:8e:45	58:D7:8E:C7:8e:31	SCAN_REQ
'	201	00:15:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP

NO.	Time	Source	Destination	TYPE
1	00:00:04	58:D7:8E:C7:8e:31	Broadcast	ADV_IND
2	00:00:08	7e:D7:8E:C7:8e:51	58:D7:8E:C7:8e:31	SCAN_REQ
3	00:00:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP
4	00:00:16	4f:b7:8E:C7:8e:38	58:D7:8E:C7:8e:31	SCAN_REQ
5	00:00:24	58:D7:8E:C7:8e:31	Broadcast	ADV_IND

Cache

2 Timing

Open Power

Votage

6 Electromagnetic

6 Acoustic

Allow-list

8 ..

200	00:15:08	73:D7:8E:C7:8e:45	58:D7:8E:C7:8e:31	SCAN_REQ
201	00:15:12	58:D7:8E:C7:8e:31	Broadcast	SCAN_RSP

Identity Resolving Key (irk_p)

Identity Resolving Key (irk_c)

Identity Resolving Key (irk,)

Identity Resolving Key (irk.)

Identity Resolving Key (irk,)

Identity Resolving Key (irk.)

	ı	1
Type	rand	Hash
01 (2bits)	0x003 (22bits)	0x0004 (24bits)

No Identity Resolving Key

RPA Replay (rpa'_n)

Type	rand	Hash
01 (2bits)	0x003 (22bits)	0x0004 (24bits)

Туре	rand	Hash
01 (2bits)	0x003 (22bits)	0x0004 (24bits)

$$irk_{p} = irk_{c} \rightarrow rpa_{p} = rpa_{c}$$

rpa_p

Identity Resolving Key (irk,)

Identity Resolving Key (irk.)

 $rpa_p = prand_{24}||H_{24}(Prand_{24}||irk_p)$

1		
Туре	rand	Hash
01 (2bits)	0x003 (22bits)	0x0004 (24bits)

No Identity Resolving Key

RPA Replay (rpa'_n)

Туре	rand	Hash
01 (2bits)	0x003 (22bits)	0x0004 (24bits)

$$irk_{p} = irk_{c} \rightarrow rpa_{p} = rpa_{c}$$

rpa',

Numeric Comparison

Passkey Entry

Outline

- Introduction
- 2 Background
- Our Prior Works
- Proposed Research

Task 1: Developing a Formal Model for Full Spectrum of the Protocols

BROADCASTING

Task 2: Developing a Formal Model for All Pairing Methods (Security)

Task 3: Modelling Linkability of BLE Devices for Privacy

Task 3: Modelling Linkability of BLE Devices for **Privacy**

Task 3: Modelling Linkability of BLE Devices for **Privacy**

- ► Unlinkability implies that an attacker cannot relate multiple observations of user actions.
- ► Proposed Solution: Using Observational Equivalence
 - ► Finding differences between all possible execution traces of two annotated systems: left and right.

Task 4: Integrating Formal Verification into the Supply-chain

Update with Specification Changes

Integration and Verification

Deliverables

- Formal models of the Bluetooth protocol: Complete formal models for the Bluetooth Low Energy protocol, covering its various aspects, including device pairing, authentication, and communication.
- Analysis of the discovered vulnerabilities: A report detailing the identified vulnerabilities in Bluetooth, based on the formal models developed.
- Open-source implementation: A prototype implementation of the proposed security enhancements for the Bluetooth protocol, released as an open-source project for the community.
- Research publications: Publish findings in peer-reviewed venues to contribute to the global knowledge base on Bluetooth IoT security and privacy.