Project context:

Continuous Reasoning with Gradual
Verification

Continuous reasoning: the ability to reason about the security of software in
an ongoing way as the software evolves

Gradual verification: using a combination of static and dynamic analysis to
reason in the presence of partial and evolving specifications

Today: continuous reasoning about memory safety in multi-language Rust
applications, using a combination of static and dynamic analysis



A Study of Undefined Behavior

Across Foreign Function Boundaries
in Rust Libraries

lan McCormack

= : : : Software and Societal
|
Carnegie Mellon University % SSD Systems Department

_ Joshua Sunshine W]
Carnegie Mellon University : . :
.\Preprlnt ¥
2 Jonathan Aldrich [=lf.

~ Carnegie Mellon University



O ® ® Background

Memory Safe
Languages

Memory Unsafe
Languages

v

f "Safer with Google: Advancing Memory Safety"
T d Alex Rebert « Security Foundations
O ay Chandler Carruth, Jen Engel, Andy Qin * Core Developers




® The Rust Programming Language

Rust can prevent safety errors
without runtime overhead.

Ownership Q &1 &mut T

“The Usability of Ownership” « Will Crichton Shared, Read-only Unique, Write
Values have exactly one owner, or none.

Safe References

A reference to a value cannot outlive the owner.

A value can have one mutable reference
or many immutable references

O ® ® Background The Rust Logo is a trademark of the Rust Foundation used under CC-BY 4.0. 4




Rust developers use a set of "unsafe”
features to interoperate with other languages.

Calling unsafe functions Dereferencing raw pointers

Intrinsics & inline assembly Implementing an unsafe trait
Manipulating uninitialized memory
Accessing global, mutable state

Corro

(ol W | Background Corro was created by Karen Rustad Tolva and is in the public domain. 5




Research Questions

What types of errors occur in
RQ1 Rust libraries that call foreign

functions? v*)

ol N ) Background Ferris was created by Karen Rustad Tolva and is in the public domain.




Developers can use unsafe code to break Rust’s aliasing rules.

Safe References

let mut x: i8 = 0;

&T &mu t T e let rx = &mut x;

Shared, Read-only Unique, Write ' let ptr =rxas *mut _;
I
L
: | example(rx, unsafe { &mut *ptr });
Raw Pointers l I
I | fn example(x: &mut i8, y: &mut i8) {
xconst/mut T - *x =0
Shared, Write y="1
*X;
}

Credit: Ralf Jung, Hoang-Hai Dang,
Jeehoon Kang, and Derek Dreyer

O ® ® Background




Miri, a Rust interpreter, can find these aliasing bugs.

Stacked Borrows: an
Aliasing Model for Rust [ Tree Borrows
OR

Neven Villani, Johannes Hostert,

Ralf Jung, Hoang-Hai Dang,
Derek Dreyer, Ralf Jung

Jeehoon Kang, and Derek Dreyer

POPL, ‘20 PLDI, 25
Bounds Checking Liveness Checking Data Race Detection
Pointer Provenance

(Address, Provenance) = (Allocation ID, Tag)

O ® ® Background




Memory Safe

Languages Miri cannot find undefined
______ behavior triggered by foreign code!

>

Memory Unsafe

Languages
¢ - >
f "Safer with Google: Advancing Memory Safety"
Alex Rebert « Security Foundations
TOday Chandler Carruth, Jen Engel, Andy Qin * Core Developers

O ® ® Background




O ® ® Background

Research Questions

What types of errors occur in
RQ1 Rust libraries that call foreign

functions? %

Which of Rust’s aliasing models permits
RQ2 more real-world programs with foreign
function calls?

10




In September of 2023, we searched through
all 125,804 Rust libraries published on crates.io
to find test cases that statically linked to foreign code.

mm nvalid Crates Falled to Compile INo Tests INo Static Linking

® O ® Methodology

11




We executed all 88,637 tests from these libraries in Miri
to find the subset of tests that called foreign functions
which were statically linked.

———
- -

.- ~. 9,130 tests (10%)
. q ( 2 i )
All Tests IFalled I Foreign Call  (Statically Linked -, from 957 crates

~
~— -
N e e e ———

.Other Error
Passed . Not Statically Linked

mm Timed Out
— Disabled

® O ® Methodology

12




We combined Miri with
LLI, an LLVM interpreter, to
create MiriLLlI.

Our tool uses each
interpreter to jointly
execute programs defined
across Rust and LLVM IR.

@® O ® Methodology

Rust Rust Compiler

Rust

Source

MIR

Memory

Miri

Shims

|

Thread
Manager

Value Translation Functions
Foreign Function Interface

s

8

LLI LLVM Thread State ]
C/CH+ Clang LLVM
Source R

13




We executed all 9,130 tests in MiriLLI.

61% encountered an unsupported operation,
but 9% had a potential bug.

We deduplicated all errors into 394 “unique” test outcomes.

error: Undefined Behavior: write access through <984> at alloc594[0x@] is forbidden
--> src/main.rs:9:5

|

| *wx = 2;

| AnAnnan write access through <984> at alloc594[0x0] is forbidden
|

® O ® Methodology

14




We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Fix Error Allocation Ownership Typing
Binding Binding - - 6
Binding LLVM - 3
LLVM LLVM - 3 - 3
Rust LLVM 1 16 - 17
Rust Rust 9 2 6 17
Total: 10 24 12 46

@ ® O Results 18




We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Fix Error
Binding Binding
Binding LLVM

LLVM LLVM
Rust LLVM
Rust Rust

Q@ ® O Results

19




@ ® O Results

We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Bug Type

Allocation Ownership Typing

20




We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Fix Error Allocation Ownership Typing

Rust LLVM 16

Total: 24

@ ® O Results

21




Q@ ® O Results

90 tests that had a Stacked Borrows violation
66% were accepted by Tree Borrows.

fn write_buffer(buffer: &mut [u8]) {

write(&mut *buffer[0], buffer.len());
} Q.b‘

Rust

void write(uint8_t *buffer, size_t len) {

*x (buffer + len - 1) = 1;

22




&T/ File &mut T

FileSystem Allocation

fs t - s alloc t

*xmut T

@ ® O Results




&T/ File \ &mut T

FileSystem Allocation

fs t - s alloc t

*xmut T

@ ® O Results




@ ® O Results

FileSystem

fs t

*mut T

Allocation

fs alloc t

25




@ ® O Results

FileSystem

fs t

*mut T

26




Miri is not enough for large-scale, multi-language applications.

Compatibility

We evaluated MiriLLIl on every compatible crate.

There were 9,130 compatible

W Unsupported [l Passed Failed
tests from 957 crates. B Timed Out N Possible Bug
61% encountered an T
unsupported operation. 0 50 100

Performance
Anecdotally, Miri is several orders of magnitude slower than native execution

O ® ® Background 27
SR



What should a new tool look like?

Fast Native instrumentation...

C/C++

...through a common format.
Support

O ® ® Background 28
SR



Pointer-Level Metadata

Pointer Provenance
(Address, Provenance) " (Allocation ID, Tag)
M M ]

Allocation-Level Metadata

Tree Borrows Stacked Borrows

Neven Villani, Johannes Hostert, Ralf Jung, Hong-Hai Dang,

Derek Dreyer, Ralf Jung Jeehon Kang, and Derek Dreyer I
PLDI ‘25 POPL ‘20

“Identity-Based Access Checking”

SoK: Sanitizing for Security * Song et al.,
O ® ® Background 2019 29




Valgrind injects instrumentation into compiled programs.

Usable Fast C/C++
Support

In 2023, the Krabcake project proposed
extending Valgrind to support detecting Valgrind's baseline

Stacked Borrows violations. RW2023! overhead is still 4x.
Felix Klock, Bryan Garza * AWS '

O ® ® Background 30



Components written in safe Rust can be
provably free of undefined behavior

-
&

O ® ® Background

Unsafe

31




® O ® Design

BorrowSanitizer

Finding aliasing bugs at-scale
borrowsanitizer.com

An LLVM-based dynamic analysis tool.

§T3 Tree Borrows Violations
&y Access out-of-bounds
gw Use-after-free

32




Architecture

Rust Compiler

— ~\

g S
Rust CargO \ o AST —_— HIR —_— MIR
Source v _Plugin/

- == l
T VTS

" Frontend \\
. Pass 7
—*~—T'4
Clang LLVM
v -~ - = ~
/e 1, AST > LLVM IR (, Runtime N
Source | N /,
’ S :
( Backend y | | Native
. Pass / Binary
A_w—
® O ® Design -



Frontend Pass

Inside the Rust Compiler

Our modified LLVM codegen backend inserts “retag” intrinsics.

@llvm.retag(ptr, usize, ul6, u8, u8)

N R R

C
6@6 C)C,@ <R NAN
ot v & & ¢
3 &8 R
® O ® Design 34



Backend Pass
Out-of-Tree LLVM Plugin

Associates each pointer with “provenance”.

AllocationID | + | Borrow Tag | + | Metadata Pointer

Uses & Thread-Local Storage and ¢% Shadow Memory for storing
and propagating provenance across the stack and heap.

Replaces “retag” intrinsics with calls into the runtime, and
instruments all memory access operations.

® O ® Design

35




Runtime
Static Rust Library

Provenance AllocInfo
Allocation ID % usize | — Allocation ID @ usize
Borrow Tag usize Base Address usize
Metadata Pointer ° Allocation Kind u8
Tree Pointer °
Tree —
® O ® Design 36



Handling Uninstrumented Libraries

Clear and expose all

Our default policy will match Miri’s .
provenance entries

behavior for native library calls. for arguments.
B l
¢ Expose all provenance entries for ‘ oo Y :
pointer arguments. Instr%mented Uninst.rbumented
Overwrite shadow provenance entries in L'ry | Llégry
their underlying allocation with | ‘
“wildcard” values. I
M)
/
Maintaining metadata integrity requires Assign “always-valid” |
knowing whether the caller is instrumented. provenance tothe | |nstrymented
return value. Interceptors
Can we detect some violations in 3rd &
party code using interception?
® O ® Design 37



Tree Borrows is inherently expensive.

38



Components written in safe Rust can be
provably free of undefined behavior

20
o=

@® ® O Prroposed Work

39




Borrow Checking Borrow Tracking

&T &mut T Stacked [ Tree O—'C%O
Shared, Read-only Unique, Write Borrows Borrows

. ¢ . »

[ static | /| [ Dynamic]

L Gradual Typing [*mut ? T] J

® ® O FutureWork 40




We need to find a o [T . o

compromise between g ;

the eager static semantics 5 |

of Polonius and S |

the lazy dynamic semantics

of Tree Borrows. Native (' L,
Execution

! Precision

® ® O Future Work a1




0.1.0 1.0.0 1.1.0

Phase 1 Phase 2 Phase 3

September 2025 December 2025 September 2026

e

Single-threaded Multi-threaded Static Optimizations
+ +

Static Proof Sketch Dynamic Optimizations

® ® O FutureWork 42
S



A Study of Undefined Behavior
Across Foreign Function Boundaries

iNn Rust Libraries

- Jonathan Aldrich

lan McCormack _Joshua Sunshine

& Carnegie Mellon University \ /' Carnegie Mellon University * / Carnegie Mellon University
Research Questions In September of 2023, we searched through We found 46 instances of undefined or L -
all 125,804 Rust libraries published on crates.io undesirable behavior from 37 libraries.
What types of errors oceur in to find test cases that statically linked to foreign code. T ——
RQ1 Rustlibraries that call foreign i Eroriii Alloostion [ommersiip) HETVoIaE
fanctionst “ [ - Binding Binding - - 6 6
wicrates  [@vatia crates  [llcompiled I”‘“ ] (Staticunkng="3 3,785 libraries (3%) Binding LM = 3 3
Which of Rust’s aliasingmodelspermits | & & ® 77 “ LLVM ] - 3 3
RQ2 more real-world programs with foreign Rust LM 1 1. - 17
function calls? w=invalid Crates IFaneu to Compile INa Tests INn Static Linking Rust Rust 9 2 6 L
Total 24 46
O ® ® sackground v ©® O @ Methodology ©® ® O Results 20 A rt I fa Ct
N

Software and Societal
Systems Department

BorrowSanitizer
This material is based on work supported by the Department of Defense and the orro Sa t €

National Science Foundation under Grant Nos. CCF-1901033, DGE1745016, and Findi ol

' ' inding aliasing bugs at-scale
DGE2140739. Our results were obtained using CloudBank, which is supported by borrowfanitizer cgom &
the National Science Foundation under award #1925001. \ ' P




	Slide 1: Project context: Continuous Reasoning with Gradual Verification
	Slide 2: A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Compatibility
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Architecture
	Slide 34: Frontend Pass 
	Slide 35: Backend Pass 
	Slide 36: Runtime
	Slide 37: Handling Uninstrumented Libraries
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

