
Project context:
Continuous Reasoning with Gradual
Verification

• Continuous reasoning: the ability to reason about the security of software in
an ongoing way as the software evolves

• Gradual verification: using a combination of static and dynamic analysis to
reason in the presence of partial and evolving specifications

• Today: continuous reasoning about memory safety in multi-language Rust
applications, using a combination of static and dynamic analysis

A Study of Undefined Behavior
Across Foreign Function Boundaries
in Rust Libraries

Ian McCormack

Joshua Sunshine
Preprint

Carnegie Mellon University

Carnegie Mellon University

Jonathan Aldrich
Carnegie Mellon University

3Background

Background

The Rust Programming Language

Ownership

“The Usability of Ownership” • Will Crichton

Values have exactly one owner, or none.

A reference to a value cannot outlive the owner.

A value can have one mutable reference
or many immutable references

Rust can prevent safety errors
without runtime overhead.

4

&T
Shared, Read-only

&mut T
Unique, Write

Safe References

The Rust Logo is a trademark of the Rust Foundation used under CC-BY 4.0.

5Background

Calling unsafe functions

Intrinsics & inline assembly

Manipulating uninitialized memory

Accessing global, mutable state

Dereferencing raw pointers

Implementing an unsafe trait

Corro

Rust developers use a set of ”unsafe”
features to interoperate with other languages.

Corro was created by Karen Rustad Tolva and is in the public domain.

6Background

RQ1
What types of errors occur in
Rust libraries that call foreign
functions?

Research Questions

Ferris was created by Karen Rustad Tolva and is in the public domain.

7Background

Developers can use unsafe code to break Rust’s aliasing rules.

&T
Shared, Read-only

&mut T
Unique, Write

*const/mut T

Shared, Write

Raw Pointers

Safe References

Credit: Ralf Jung, Hoang-Hai Dang,
Jeehoon Kang, and Derek Dreyer

let mut x: i8 = 0;

let rx = &mut x;

let ptr = rx as *mut _;

example(rx, unsafe { &mut *ptr });

fn example(x: &mut i8, y: &mut i8) {

 *x = 0

 *y = 1;

 *x;

}

8Background

Miri, a Rust interpreter, can find these aliasing bugs.

(Allocation ID, Tag)

Provenance

(Address, Provenance)

Pointer

OR

Stacked Borrows: an
Aliasing Model for Rust

Ralf Jung, Hoang-Hai Dang,
Jeehoon Kang, and Derek Dreyer

POPL, ‘20

Tree Borrows

Neven Villani, Johannes Hostert,
Derek Dreyer, Ralf Jung

PLDI, ‘25

Bounds Checking Liveness Checking Data Race Detection

9Background

Miri cannot find undefined
behavior triggered by foreign code!

10Background

RQ1
What types of errors occur in
Rust libraries that call foreign
functions?

RQ2
Which of Rust’s aliasing models permits
more real-world programs with foreign
function calls?

Research Questions

Ferris was created by Karen Rustad Tolva and is in the public domain.

11Methodology

In September of 2023, we searched through
all 125,804 Rust libraries published on crates.io
to find test cases that statically linked to foreign code.

 ll Crates alid Crates

 nvalid Crates

Co piled

 ailed to Co pile

 ad Tests

 o Tests

 tatic inking

 o tatic inking

3,785 libraries (3%)

12Methodology

We executed all 88,637 tests from these libraries in Miri
to find the subset of tests that called foreign functions
which were statically linked.

 ll Tests ailed

 assed

Ti ed Out

Disabled

 oreign Call

Other rror

 tatically inked

 ot tatically inked

9,130 tests (10%)
from 957 crates

13Methodology

We combined Miri with
LLI, an LLVM interpreter, to
create MiriLLI.

Our tool uses each
interpreter to jointly
execute programs defined
across Rust and LLVM IR.

14Methodology

A

error: Undefined Behavior: write access through <984> at alloc594[0x0] is forbidden
 --> src/main.rs:9:5
 |
 | *wx = 2;
 | ^^^^^^^ write access through <984> at alloc594[0x0] is forbidden
 |

We executed all 9,130 tests in MiriLLI.

61% encountered an unsupported operation,
but 9% had a potential bug.

We deduplicated all errors into 394 “unique” test outco es.

We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Location Bug Type
Total

Fix Error Allocation Ownership Typing

Binding Binding - - 6 6

Binding LLVM - 3 - 3

LLVM LLVM - 3 - 3

Rust LLVM 1 16 - 17

Rust Rust 9 2 6 17

Total: 10 24 12 46

18Results

We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Location Bug Type
Total

Fix Error Allocation Ownership Typing

Binding Binding - - 6 6

Binding LLVM - 3 - 3

LLVM LLVM - 3 - 3

Rust LLVM 1 16 - 17

Rust Rust 9 2 6 17

Total: 10 24 12 46

19Results

We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Location Bug Type
Total

Fix Error Allocation Ownership Typing

Binding Binding - - 6 6

Binding LLVM - 3 - 3

LLVM LLVM - 3 - 3

Rust LLVM 1 16 - 17

Rust Rust 9 2 6 17

Total: 10 24 12 46

20Results

We found 46 instances of undefined or
undesirable behavior from 37 libraries.

Location Bug Type
Total

Fix Error Allocation Ownership Typing

Binding Binding - - 6 6

Binding LLVM - 3 - 3

LLVM LLVM - 3 - 3

Rust LLVM 1 16 - 17

Rust Rust 9 2 6 17

Total: 10 24 12 46

21Results

90 tests that had a Stacked Borrows violation
66% were accepted by Tree Borrows.

Void
void write(uint8_t *buffer, size_t len) {

 *(buffer + len - 1) = 1;

}

C

Rust
fn write_buffer(buffer: &mut [u8]) {

 write(&mut *buffer[0], buffer.len());

}

22Results

23Results

A

FileSystem

A

Allocation

File&T &mut T

A Afs_t fs_alloc_t

*mut T

24Results

A

FileSystem

Afs_t
A

Allocation

File&T &mut T

Afs_alloc_t

*mut T

25Results

A

FileSystem

Afs_t
A

Allocation

File&T &mut T

Afs_alloc_t

*mut T

26Results

A

FileSystem

Afs_t
A

Allocation

File&T &mut T

fs_alloc_t

*mut T

Background 27

There were 9,130 compatible
tests from 957 crates.

61% encountered an

unsupported operation.

We evaluated MiriLLI on every compatible crate.

Compatibility

Performance

Anecdotally, Miri is several orders of magnitude slower than native execution

Miri is not enough for large-scale, multi-language applications.

Background 28

What should a new tool look like?

AFast ative instru entation…

A
C/C++

Support
…through a co on for at.

Background

“ dentity-Based ccess Checking”
SoK: Sanitizing for Security • Song et al.,
2019

(Address, Provenance)

Pointer

(Allocation ID, Tag)

Provenance

Pointer-Level Metadata

Tree Borrows

Neven Villani, Johannes Hostert,

Derek Dreyer, Ralf Jung

PLDI ‘25

Stacked Borrows

Ralf Jung, Hong-Hai Dang,

Jeehon Kang, and Derek Dreyer

POPL ‘20

Allocation-Level Metadata

29

Background

Valgrind injects instrumentation into compiled programs.

In 2023, the Krabcake project proposed
extending Valgrind to support detecting
Stacked Borrows violations.
 elix Klock, Bryan Garza • W

A
 algrind’s baseline
overhead is still 4x.

AUsable AFast A
C/C++

Support

RW2023!

30

Background

Components written in safe Rust can be
provably free of undefined behavior

Safe

Unsafe

31

Design
32

A

An LLVM-based dynamic analysis tool.

borrowsanitizer.com

BorrowSanitizer
Finding aliasing bugs at-scale

 Tree Borrows Violations

 Access out-of-bounds

 Use-after-free

Design

LLVM IR

AST HIR MIR

C/C++
Source

Rust
Source

Rust Compiler

Clang LLVM

AST

Native
Binary

33

Cargo
Plugin

Frontend
Pass

Runtime

Backend
Pass

Architecture

Design 34

Inside the Rust Compiler

Frontend Pass

@llvm.retag(ptr, usize, u16, u8, u8)

Our odified M codegen backend inserts “retag” intrinsics.

Design 35

Out-of-Tree LLVM Plugin

Backend Pass

 ssociates each pointer with “provenance”.

Uses Thread-Local Storage and Shadow Memory for storing
and propagating provenance across the stack and heap.

Borrow Tag Metadata PointerAllocation ID + +

Replaces “retag” intrinsics with calls into the runti e, and
instruments all memory access operations.

Design 36

Static Rust Library

Runtime

Allocation ID

Borrow Tag

Metadata Pointer

usize

usize

Tree

Provenance AllocInfo

…

u8

Tree Pointer

Base Address

Allocation Kind

usize

usizeAllocation ID

Design

Our default policy will match Miri’s
behavior for native library calls.

Overwrite shadow provenance entries in
their underlying allocation with
“wildcard” values.

Instrumented
Library

Uninstrumented
Library

Instrumented
Interceptors

 ssign “always-valid”

provenance to the

return value.

Clear and expose all

provenance entries

for arguments.

Expose all provenance entries for

pointer arguments.

Can we detect some violations in 3rd

party code using interception?

37

Handling Uninstrumented Libraries

Maintaining metadata integrity requires

knowing whether the caller is instrumented.

38

Add indirection to shadow memory. Compress the Tree.

Defer initializing the Tree.

Reduce the size of the borrow tag.

Reduce the size of the Allocation ID.

LLVM temporaries.

Unify stack allocations.

Tag-check for rozen.

Inlining.
ATree Borrows is inherently expensive.

Co ponents written in safe Rust can be
provably free of undefined behavior

Safe

Unsafe

39 roposed Work

Future Work

Static

Borrow Checking

&T
Shared, Read-only

&mut T
Unique, Write

Dyna ic

Gradual Typing *mut ? T

 tacked
Borrows

Borrow Tracking

Tree
Borrows

40

Future Work

We need to find a
co pro ise between
the eager static se antics
of olonius and
the lazy dynamic se antics
of Tree Borrows.

Precision

Native
Execution

Unopti ized
Baseline

O
v

e
rh

e
a

d
41

Future Work 42

Phase 1

0.1.0

September 2025

Phase 2

1.0.0

December 2025

Phase 3

1.1.0

 epte ber 2026

Multi-threaded Static Optimizations ingle-threaded
+

Dyna ic Opti izations
+

Static Proof Sketch

Artifact

Preprint

 tudy of Undefined Behavior
 cross oreign unction Boundaries
in Rust ibraries

Ian McCormack

A

borrowsanitizer.co

Borrow anitizer
Finding aliasing bugs at-scale

This material is based on work supported by the Department of Defense and the
National Science Foundation under Grant Nos. CCF-1901033, DGE1745016, and
DGE2140739. Our results were obtained using CloudBank, which is supported by
the National Science Foundation under award #1925001.

Carnegie Mellon University

Joshua unshine
Carnegie Mellon University

Jonathan Aldrich
Carnegie Mellon University

	Slide 1: Project context: Continuous Reasoning with Gradual Verification
	Slide 2: A Study of Undefined Behavior Across Foreign Function Boundaries in Rust Libraries
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Compatibility
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Architecture
	Slide 34: Frontend Pass
	Slide 35: Backend Pass
	Slide 36: Runtime
	Slide 37: Handling Uninstrumented Libraries
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

