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Overview

• Malware is pervasive – millions of new samples are discovered each 
year

• There are too many samples uncovered each year to manually reverse 
engineer all of them
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Overview

• Malware is pervasive – millions of new samples are discovered each 
year

• There are too many samples uncovered each year to manually reverse 
engineer all of them

• Automated malware analysis depends on effective triage and 
classification

• Modern malware samples exhibit stealthiness and complex static 
obfuscation

• Neural malware classifiers lack verifiability and robustness against 
stealthiness and obfuscation
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Malware Classification with Neural Networks

• Neural Networks are a popular means of classification:
• Benign vs. malicious
• Malware family

• Neural networks lack explainability, robustness, and verifiability
(for malware analysis)
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Project Recap – Students and Outreach

• Multiple students involved in project leading to publications
• Judy Nguyen (ICDCS)

• Skyler Grandel (DSN, TOSEM)

• Previously: Yifan Zhang (EuroS&P), Preston Robinette (FormaliSE)

• Undergraduate outreach
• Yuwei Yang, Sahnee Shin, Eli Zhang, Evelyn Guo

• Previously: Lana Cartailler, Jiliang Eric Li 

• Community outreach
• Tutorials at DSN 2024

• VNNComp integration of malware benchmark
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Outline

• Malware Analysis and Classification

• Domain Generalization in Federated Learning
• In ICDCS’25: Judy Nguyen, Taylor Johnson, Kevin Leach

PARDON: Privacy-Aware and Robust Federated Domain Generalization

• Effectiveness of Reverse Engineering Tools

• In DSN’25: Yuwei Yang, Skyler Grandel, et al.: 
A Human Study of Automatically Generated Decompiler Annotations.

• LLM-based Enhancement of Decompilation

• In TOSEM: Skyler Grandel, Scott Andersen, et. al:
Expertise-Guided Context Generation to Enhance Code Comprehension
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Federated Learning
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➢ Data comes from multiple devices
and can be personal and private

No sharing



Federated Domain Shift
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➢ In practical FL systems, data across 
clients may come from different 
domains

#1 #2 #3 #4

Domains: shape, color, brightness,
artistic factors



Federated Domain Shift
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➢ Federated Domain Generalization 
(FedDG): clients have data from 
different domains, and the global model 
should predict well on unseen domains

Server

#1 #2 #3 #4

Unseen 

Domain



Federated Domain Shift
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✘ However, FedDG is challenging!

Server Unseen 

Domain

The decision boundary of 

different classes is unclear



Previous FedDG Methods: Weaknesses

•  Designated for domain-isolated settings
• lowering variance of local losses, regularization, etc. 
• each client only contains data from one domain:

#clients = #domains
• limited performance under client sampling

• Evaluations are confined to testing on datasets 
with limited domain diversity 

• Cross-sharing information can lead to privacy 
breaches

• Augmentation using per-sample information

12

One 

round



PARDON: Contribution

• Handling domain-shift more EFFECTIVELY
• Better utility on unseen domains

• … while keeping PRIVACY of client data

• … while demonstrating GENERALIZABILITY 
through improved utility with:

• Decreased proportion of client sampling

• Diverse distribution of domains across clients

• Large number of domains
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Interpolation style



Key Insights for PARDON

• Securely extract interpolation information
• Only share as much information as needed (i.e., no specifics of samples)

• Contrastive learning on style transferred images
• Forces model to learn domain-agnostic features
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Interpolation Style

• Each style in each client is abstracted as a vector of (mean, variance) pairs 
for channels of pixels

• Removes critical details of individual samples
• Interpolation Style can help clients transfer styles without sharing data

15

V
G

G
 

E
n
c
o
d
e
r

Width (W)

H
e
ig

h
t 
(H

)

𝑆 𝑥 = (𝜇 𝑥 , 𝜎 𝑥) ∈ ℝ2𝑑

Width

H
e
ig

h
t

d: dimension

𝐱

𝛟

𝛟(𝐱)

( )

𝜙(𝑥)ℎ𝑤



Interpolation Style

• Hierarchical unsupervised style clustering:
• Intra-client level

• Inter-client level
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One client may have data 
from multiple domains

𝑆𝒞𝑘

represents
client’s 

style



Interpolation Style

• Hierarchical unsupervised style clustering:
• Intra-client level

• Inter-client level
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One client may have data 
from multiple domains

𝑆𝒞𝑘

represents
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style

➢ client-level clustering
➢ There can be clients having similar styles

Local style 𝑆𝐶𝑖  = (𝜇𝑖, 𝜎𝑖)

Interpolation style 𝑆𝑔 = (𝜇𝑔, 𝜎𝑔)

𝑆𝑙1

𝑆𝑙2
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Interpolation Style

• Hierarchical unsupervised style clustering:
• Intra-client level

• Inter-client level
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➢ client-level clustering
➢ there can be clients having similar styles

Local style 𝑆𝐶𝑖  = (𝜇𝑖, 𝜎𝑖)

Interpolation style 𝑆𝑔 = (𝜇𝑔, 𝜎𝑔)

𝑆𝑙1

𝑆𝑙2

𝑆𝑙3𝑆𝑙4

✓ Domains with low cardinality
✓ Fair and comprehensive knowledge 

across all domains 

Interpolation style



Experimental Setup

•  Datasets: PACS, Office-Home, and IWildCam
• Small number of domains and large number domains
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4 Domains – 7 Classes 4 Domains – 65 Classes

1 Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. M. 2017. Deeper, broader and artier domain generalization. In Proceedings of the IEEE international conference on computer vision, 5542–5550. 

323 domains - 182 classes

PACS1 Office-Home1 IWildCam2

2 Koh, P. W.; Sagawa, S.; Marklund, H.; Xie, S. M.; Zhang, M.; Balsubramani, A.; Hu, W.; Yasunaga, M.; Phillips, R. L.; Gao, I.; et al. 2021. Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on 

Machine Learning, 5637–5664. PMLR. 



Experimental Results

1. RQ1: Does PARDON perform well compared to SOTA?
a. “Leave One Domain Out” (LODO) Split

b. “Leave Two Domains Out” (LOTO) Split

c. Large-domain Dataset: I-WildCam

2. RQ2: Can PARDON perform well across many settings?
a. Different client sampling

b. Different domain heterogeneity

3. RQ3: How well does PARDON improve client data privacy? 

4. RQ4: What is the computational overhead of using PARDON?
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RQ1.b. Comparison with SOTA: LTDO
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With smaller number of training domains, 
PARDON outperforms other baselines by a larger margin



RQ2.a. Different FL Settings: Client Sampling
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The higher the ratio K:N is, the larger the amount of 
data that participates in each training round.

✘Baseline: strong 
performance with no 
client sampling (5/5) but 
diminished performance 
with increasingly sparse 
sampling

✔PARDON: outperforms in 
terms of stability and 
efficiency 
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RQ3: Security Analysis
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Art Painting Cartoon SketchPhoto

Real 
Images

Reconstructed
by Baseline

Baseline Case: 
GAN model is trained on REAL images from clients
(to assume a strong adversary)

Adversary 

HAS: style vectors

WANTS: private training images 

𝑆𝒞𝑘

Encoder Decoder

A generative model to reconstruct images from style vectors

Input Output

𝑆𝒞𝑘



RQ3: Security Analysis
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Art Painting Cartoon SketchPhoto

Real 
Images

Baseline

MSE

LPIPS

Reconstructed images 
by using style vectors 

and public images 

➢Reconstructed images are far 
different from the real images 

➢ It is non-trivial to reconstruct a 
client’s data using only style 
vectors as in our approach



Summarizing PARDON

1. PARDON outperforms SOTA on both LODO and LTDO and when 
applied to a large number of domains

2. PARDON maintains improved performance under client sampling 
and with increased domain heterogeneity

3. PARDON’s style vectors create challenges for violating data privacy 
across clients

PARDON can be applied to malware classification settings, enabling 
style transfer across datasets to unify data and develop novel 
plausible samples
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Outline

• Malware Analysis and Classification

• Domain Generalization in Federated Learning
• In ICDCS’25: Judy Nguyen, Taylor Johnson, Kevin Leach

PARDON: Privacy-Aware and Robust Federated Domain Generalization

• Effectiveness of Reverse Engineering Tools

• In DSN’25: Yuwei Yang, Skyler Grandel, et al.: 
A Human Study of Automatically Generated Decompiler Annotations.

• LLM-based Enhancement of Decompilation

• In TOSEM: Skyler Grandel, Scott Andersen, et. al:
Expertise-Guided Context Generation to Enhance Code Comprehension
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Manual Analysis

8/5/2025 28

• Automated malware analysis isn’t always enough.
• Further manual analysis may be required after classification.

• How can we make this process as easy as possible?



Manual Analysis

8/5/2025 29



ML Assisted Manual Analysis
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ML Assisted Manual Analysis

8/5/2025 31

Variable & Type Name Recovery
• DIRE
• DIRECT
• DIRTY



Assumed Relationship
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Assumed Relationship
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Does this relationship actually exist?

Do better variable name and type recoveries 
help reverse engineers in practice?



Study Design

8/5/2025 34

Randomly 
Assigned



Study Design
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Randomly 
Assigned

Developer correctness and time taken 
to complete each task are used to 

measure comprehension.



Results: User Preference

8/5/2025 36

Spearman 
correlation:
p-value = 0.02459 
and ρ = 0.1035.

Users prefer the 
variable names 
provided by DIRTY.
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Results: User Performance
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Users prefer the 
variable names 
provided by DIRTY. But there is

  No statistically 
significant difference 
in accuracy and 
correctness or time.



Results: Similarity Metrics & Code Comprehension
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Correlation Between Similarity Metrics and Participant 

Time Taken on DIRTY Annotated Code Snippets

Correlation Between Similarity Metrics and Participant

Correctness on DIRTY Annotated Code Snippets



Results: Similarity Metrics & Code Comprehension
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Results: Similarity Metrics & Code Comprehension
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Results: Similarity Metrics & Code Comprehension
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Correlation Between Similarity Metrics and Participant 

Time Taken on DIRTY Annotated Code Snippets

Correlation Between Similarity Metrics and Participant

Correctness on DIRTY Annotated Code Snippets

Insight: commonly used metrics may not 

effectively reflect human code comprehension.



Contributions

8/5/2025 42

• Empirical Evaluation of ML Performance Metrics:
We show that commonly used machine learning metrics for variable and 
type name recovery do not correlate with actual improvements in human 
code comprehension.

• User Preference for ML-Augmented Decompiler Output:
Despite limited performance gains, users consistently preferred 
decompiled code enhanced with machine-generated names and types.

• Developer Performance and Enriched Code Analysis:
Our study finds no significant improvement in task performance from 
enriched decompiler output, suggesting current augmentation techniques 
have limited practical effectiveness.



Outline
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Manual Analysis
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ML Assisted Manual Analysis
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ML Assisted Manual Analysis
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/* entry in a list of structs 
*/



Expertise-Guided Context Generation
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• Core Idea: Leverage LLMs augmented with developer insights to pick 
where and what to annotate in code.

• Use experts to identify 
• where useful comments are located in code

• common structures of useful comments



Expertise-Guided Context Generation
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Expertise-Guided Context Generation
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Expertise-Guided Context Generation
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Expertise-Guided Context Generation
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Expertise-Guided Context Generation
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Expertise-Guided Context Generation
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Expert Labeling Study
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Expert Labeling Study
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Is this comment useful?
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Expertise-Guided Context Generation

8/5/2025 58



Expertise-Guided Context Generation
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Empirical Evaluation in Practice
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Empirical Evaluation in Practice
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• Evaluate programmer comprehension of code annotated by
• ComCat

• Humans

• “Standard” ChatGPT

• Comprehension is measured through 3 tasks:
• Short Answer

• Code Writing

• Debugging
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Results: Developer Performance Using ComCat

Compared to Human Generated Compared to Standard ChatGPT

Question 
Type

Change in 
Correctness

p
Change in 

Correctness
p

Short 
Answer

+13.6% <0.001 +14.3% <0.001

Code 
Writing

+18.7% <0.001 +30.9% <0.001

Debugging +7.0% 0.041 +11.4% 0.025

Overall +13.3% <0.001 +16.3% <0.001
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Key Takeaways

• ComCat Boosts Understandability
• +13–16% improvement in human participants’ comprehension accuracy.

• Annotations are targeted and aligned with developer mental models.

• In Malware Analysis
• Decompiled malware often has zero semantic clues—ComCat’s inline 

annotations directly fill that gap.

• Better comprehension → better identification of malicious routines.
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Next Steps

• Integration with decompilers

• Future evaluation: User Study with Malware Analysts

• Extended capabilities
• Domain-Adapted Templates/Prompts.

• Combine with dynamic traces to annotate control-flow graphs.
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VNN-Comp and MalBeWare Benchmark

• Previously-reported verification techniques for malware classifiers has 
been incorporated into VNN-Comp

• MalBeWare benchmark available 

• Upcoming VNN-COMP’25 at CAV/SAIV 2025
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Summary

• Malware samples are too voluminous for scalable analysis
• Automated analysis can be thwarted by perturbations and evasiveness

• Generating interpolation styles for diverse datasets can help improve 
robustness and generalizability of neural classifiers

• Techniques that attempt to improve decompilation do not necessarily 
improve reverse engineer comprehension, complicating analysis efforts

Skyler Grandel (skyler.h.grandel@vanderbilt.edu)

Kevin Leach (kevin.leach@vanderbilt.edu) Taylor Johnson (taylor.johnson@vanderbilt.edu)
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