In security, our concern is typically with securing a particular network, or eliminating security holes in a particular piece of software. These are important, but they miss the fact that being secure is fundamentally about security of all constituent parts, rather that any single part in isolation. In principle, if we can control all the pieces of a system, we can secure all possible channels of attack. Typically, system and security design of various components are performed by different agents, having varying and often conflicting interests. Our goal is to develop this framework, and associated computational tools to address security holistically, accounting for incentives of all the parties.
In particular, the project aspires to investigate the many facets of decentralization in security. The overarching aim is to answer the following three questions in a variety of relevant settings: 1) what does decentralization of security decisions and associated incentive misalignment imply for overall system security; 2) in the world of decentralized security decisions, how should an organization optimally secure itself; and 3) how can one design incentives or constraints to improve the overall system security. Much of the project focus will be on interdependence of security decisions, giving rise to competing decision externalities: positive externalities, where securing one’s system reduces exposure risk for others, and negative externalities, where security of one system incentivizes the attacker to attack another. The former will tend to lead to under-investment in security; the latter are expect to push organizations to invest too much.