Architecture-based Self Securing Systems
Lead PI:
David Garlan
Co-Pi:
Abstract

An important emerging trend in the engineering of complex software-based systems is the ability to incorporate self-adaptive capabilities. Such systems typically include a set of monitoring mechanisms that allow a control layer to observe the running behavior of a target system and its environment, and then repair the system when problems are detected. Substantial results in applying these concepts have emerged over the past decade, addressing quality dimensions such as reliability, performance, and database optimization.  In particular, at Carnegie Mellon we have shown how architectural models, updated at runtime, can form the basis for effective and scalable problem detection and correction. However, to-date relatively little research has been done to apply these techniques to support detection of security-related problems and identification of remedial actions. In this project we propose to develop scientific foundations, as well as practical tools and techniques, to support self-securing systems, focusing specifically on questions of scalable assurance.

OUR QUALIFICATIONS:

Prof. David Garlan and Dr. Bradley Schmerl have been working in the area of architecture-based self-adaptation for over a decade. They have developed both foundations and tools – specifically, a platform called “Rainbow” – that are considered seminal work in this area of architecture-based adaptation. Ivan Ruchkin is a Ph.D. candidate working under the direction of Prof. Garlan in the area of formal modeling of dynamic changes in systems from an architectural perspective. His work will support assurances that operations that change a system at run-time are sound, and do not violate the properties and rules defined by the architecture.

OUR TEAM:

PI: Prof. David Garlan (Faculty),

Staff: Dr. Bradley Schmerl (Research Faculty)

Students: Ivan Ruchkin (Ph.D. Student), new student to be recruited.

David Garlan

David Garlan is a Professor in the School of Computer Science at Carnegie Mellon University. His research interests include:

  • software architecture
  • self-adaptive systems
  • formal methods
  • cyber-physical system

Dr. Garlan is a member of the Institute for Software Research and Computer Science Department in the School of Computer Science.

He is a Professor of Computer Science in the School of Computer Science at Carnegie Mellon University.  He received his Ph.D. from Carnegie Mellon in 1987 and worked as a software architect in industry between 1987 and 1990.  His research interests include software architecture, self-adaptive systems, formal methods, and cyber-physical systems.  He is recognized as one of the founders of the field of software architecture, and, in particular, formal representation and analysis of architectural designs. He is a co-author of two books on software architecture: "Software Architecture: Perspectives on an Emerging Discipline", and "Documenting Software Architecture: Views and Beyond." In 2005 he received a Stevens Award Citation for “fundamental contributions to the development and understanding of software architecture as a discipline in software engineering.” In 2011 he received the Outstanding Research award from ACM SIGSOFT for “significant and lasting software engineering research contributions through the development and promotion of software architecture.”  In 2016 he received the Allen Newell Award for Research Excellence. In 2017 he received the IEEE TCSE Distinguished Education Award and also the Nancy Mead Award for Excellence in Software Engineering Education He is a Fellow of the IEEE and ACM.