Cyber-Physical Systems (CPS) are vulnerable to elusive dynamics-aware attacks that subtly change local behaviors in ways that lead to large deviations in global behavior, and to system instability. The broad agenda for this project is to classify attacks on different classes of CPS based on detectability. In particular, we are identifying attacks that are impossible to detect in a given class of CPS (with reasonable resources), and we are developing detection algorithms for those that are possible. The methods developed will primarily be aimed at scenarios in which attackers have some ability to intermittently disrupt either the timing or the quality-of-service of software or communication processes, even though the processes may not have been breached in the traditional sense. Much of the work will also apply to cases where such limited disruptions are introduced physically. Our approach is based on a set of powerful technical tools that draw from and combine ideas from robust control theory, formal methods, and information theory.
Sayan Mitra is a Professor, Associate Head of Graduate Affairs, and John Bardeen Faculty Scholar of ECE at UIUC. His research is on safe autonomy. His research group develops theory, algorithms, and tools for control synthesis and verification. Some of these have been patented and are being commercialized. Several former PhD students are now professors: Taylor Johnson (Vanderbilt), Parasara Sridhar Duggirala (NC Chapel Hill), and Chuchu Fan (MIT). Sayan received his PhD from MIT with Nancy Lynch. His textbook on verification of cyber-physical systems was published by MIT press in 2021. The group's work has been recognized with NSF CAREER Award, AFOSR Young Investigator Research Program Award, ACM SRC gold prize, IEEE-HKN C. Holmes MacDonald Outstanding Teaching Award (2013), Siebel Fellowship, and several best paper awards.