The Computational and Symbolic Security Analysis Connections
Author
Abstract

A considerable portion of computing power is always required to perform symbolic calculations. The reliability and effectiveness of algorithms are two of the most significant challenges observed in the field of scientific computing. The terms “feasible calculations” and “feasible computations” refer to the same idea: the algorithms that are reliable and effective despite practical constraints. This research study intends to investigate different types of computing and modelling challenges, as well as the development of efficient integration methods by considering the challenges before generating the accurate results. Further, this study investigates various forms of errors that occur in the process of data integration. The proposed framework is based on automata, which provides the ability to investigate a wide-variety of distinct distance-bounding protocols. The proposed framework is not only possible to produce computational (in)security proofs, but also includes an extensive investigation on different issues such as optimal space complexity trade-offs. The proposed framework in embedded with the already established symbolic framework in order to get a deeper understanding of distance-bound security. It is now possible to guarantee a certain level of physical proximity without having to continually mimic either time or distance.

Year of Publication
2022
Conference Name
2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA)
Google Scholar | BibTeX