EL-GRILLO: Leaking Data Ultrasonically from Air-Gapped PCs via the Tiny Motherboard Buzzer
Author
Abstract

Air-gapped workstations are separated from the Internet because they contain confidential or sensitive information. Studies have shown that attackers can leak data from air-gapped computers with covert ultrasonic signals produced by loudspeakers. To counteract the threat, speakers might not be permitted on highly sensitive computers or disabled altogether - a measure known as an ’audio gap.’ This paper presents an attack enabling adversaries to exfiltrate data over ultrasonic waves from air-gapped, audio-gapped computers without external speakers. The malware on the compromised computer uses its built-in buzzer to generate sonic and ultrasonic signals. This component is mounted on many systems, including PC workstations, embedded systems, and server motherboards. It allows software and firmware to provide error notifications to a user, such as memory and peripheral hardware failures. We examine the different types of internal buzzers and their hardware and software controls. Despite their limited technological capabilities, such as 1-bit sound, we show that sensitive data can be encoded in sonic and ultrasonic waves. This is done using pulse width modulation (PWM) techniques to maintain a carrier wave with a dynamic range. We also show that malware can evade detection by hiding in the frequency bands of other components (e.g., fans and power supplies). We implement the attack using a PC transmitter and smartphone app receiver. We discuss transmission protocols, modulation, encoding, and reception and present the evaluation of the covert channel as well. Based on our tests, sensitive data can be exfiltrated from air-gapped computers through its built- in buzzer. A smartphone can receive data from up to six meters away at 100 bits per second.

Year of Publication
2023
Date Published
aug
URL
https://ieeexplore.ieee.org/document/10319985
DOI
10.1109/PST58708.2023.10319985
Google Scholar | BibTeX | DOI