On Frame Fingerprinting and Controller Area Networks Security in Connected Vehicles
Author
Abstract

Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.

Year of Publication
2022
Conference Name
2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)
Google Scholar | BibTeX