IReF: Improved Residual Feature For Video Frame Deletion Forensics
Author
Abstract

Information Forensics - Frame deletion forensics has been a major area of video forensics in recent years. The detection effect of current deep neural network-based methods outperforms previous traditional detection methods. Recently, researchers have used residual features as input to the network to detect frame deletion and have achieved promising results. We propose an IReF (Improved Residual Feature) by analyzing the effect of residual features on frame deletion traces. IReF preserves the main motion features and edge information by denoising and enhancing the residual features, making it easier for the network to identify the tampered features. And the sparse noise reduction reduces the storage requirement. Experiments show that under the 2D convolutional neural network, the accuracy of IReF compared with residual features is increased by 3.81 \%, and the storage space requirement is reduced by 78\%. In the 3D convolutional neural network with video clips as feature input, the accuracy of IReF features is increased by 5.63\%, and the inference efficiency is increased by 18\%.

Year of Publication
2022
Date Published
aug
DOI
10.1109/ICDIS55630.2022.00045
Google Scholar | BibTeX | DOI