Port Smart Gate Ground Scale Line Pressure Detection using Federated Learning: Backdoor Attacks
Author
Abstract

The traditional port smart gate ground scale line pressure detection system employs a centralized data training method that carries the risk of privacy leakage. Federated Learning offers an effective solution to this issue by enabling each port gate to locally train data, sharing only model parameters, without the need to transmit raw data to a central server. This is particularly crucial for ground scale line pressure detection systems dealing with sensitive data. However, researchers have identified potential risks of backdoor attacks when applying Federated Learning. Currently, most existing backdoor attacks are directed towards image classification and centralized object detection. However, backdoor attacks for Federated Learning-based object detection tasks have not been explored. In this paper, we reveal that these threats may also manifest in this task. To analyze the impact of backdoor attacks on this task, we designed three backdoor attack triggers and proposed three trigger attack operations. To assess backdoor attacks on this task, we developed corresponding metrics and conducted experiments on local datasets from three port gates. The experimental results indicate that Federated Learning-based object detection tasks are susceptible to backdoor threats.

Year of Publication
2023
Date Published
dec
URL
https://ieeexplore.ieee.org/document/10505360
DOI
10.1109/AIHCIR61661.2023.00062
Google Scholar | BibTeX | DOI