Temporal Exposure Reduction Protection for Persistent Memory | |
---|---|
Author | |
Abstract |
The long-living nature and byte-addressability of persistent memory (PM) amplifies the importance of strong memory protections. This paper develops temporal exposure reduction protection (TERP) as a framework for enforcing memory safety. Aiming to minimize the time when a PM region is accessible, TERP offers a complementary dimension of memory protection. The paper gives a formal definition of TERP, explores the semantics space of TERP constructs, and the relations with security and composability in both sequential and parallel executions. It proposes programming system and architecture solutions for the key challenges for the adoption of TERP, which draws on novel supports in both compilers and hardware to efficiently meet the exposure time target. Experiments validate the efficacy of the proposed support of TERP, in both efficiency and exposure time minimization. |
Year of Publication |
2022
|
Conference Name |
2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
|
Google Scholar | BibTeX |