Trust-Aware Certificateless Signature on IIoT Sensors using Blockchain Technology
Author
Abstract

Provable Security - The Industrial Internet of Things (IIoT) has brought about enormous changes in both our individual ways of life and the ways in which our culture works, transforming them into an unique electronic medium. This has enormous implications for almost every facet of life, including clever logistical, smart grids, and smart cities. In particular, the amount of gadgets that are part of the Industrial Internet of Things (IIoT) is increasing at such a fast pace that numerous gadgets and sensors are constantly communicating with one another and exchanging a substantial quantity of data. The potential of spying and hijacked assaults in messaging services has grown as a result of the creation; as a direct consequence of this, protecting data privacy and security has become two key problems at the current moment. In recent years, a protocol known as certificateless signature (LCS), which is both better secured and lighter, has been more popular for use in the development of source of energy IIoT protocols. The Schnorr signature serves as the foundation for this method s underlying mechanism. In spite of this, we found that the vast majority of the currently implemented CLS schemes are susceptible to a number of widespread security flaws. These flaws include man-in-the-middle (MITM) attacks, key generation centre (KGC) compromised attacks, and distributed denial of service (DDoS) attacks. As a potential solution to the issues that have been discussed in the preceding paragraphs, we, the authors of this work, suggest an unique pairing-free provable data approach. In order to develop a revolutionary LCS scheme that is dependable and efficient, this plan takes use of the most cutting-edge blockchain technology as well as smart contracts. After that, in order to verify the dependability of our system, we simulate both Type-I and Type-II adversary and run the results through a series of tests. The findings of a system security and a summative assessment have shown that our design is capable of providing more reliable security assurance at a lower overall cost of computation (for illustration, limited by around 40.0\% at most) and transmission time (for example, reduced by around 94.7\% at most) like other proposed scheme.

Year of Publication
2022
Date Published
nov
Publisher
IEEE
Conference Location
Belgaum, India
ISBN Number
978-1-66545-046-1
URL
https://ieeexplore.ieee.org/document/10094457/
DOI
10.1109/INCOFT55651.2022.10094457
Google Scholar | BibTeX | DOI