XAI enhancing cyber defence against adversarial attacks in industrial applications
Author
Abstract

In recent years there is a surge of interest in the interpretability and explainability of AI systems, which is largely motivated by the need for ensuring the transparency and accountability of Artificial Intelligence (AI) operations, as well as by the need to minimize the cost and consequences of poor decisions. Another challenge that needs to be mentioned is the Cyber security attacks against AI infrastructures in manufacturing environments. This study examines eXplainable AI (XAI)-enhanced approaches against adversarial attacks for optimizing Cyber defense methods in manufacturing image classification tasks. The examined XAI methods were applied to an image classification task providing some insightful results regarding the utility of Local Interpretable Model-agnostic Explanations (LIME), Saliency maps, and the Gradient-weighted Class Activation Mapping (Grad-Cam) as methods to fortify a dataset against gradient evasion attacks. To this end, we “attacked” the XAI-enhanced Images and used them as input to the classifier to measure their robustness of it. Given the analyzed dataset, our research indicates that LIME-masked images are more robust to adversarial attacks. We additionally propose an Encoder-Decoder schema that timely predicts (decodes) the masked images, setting the proposed approach sufficient for a real-life problem.

Year of Publication
2022
Date Published
dec
URL
https://ieeexplore.ieee.org/document/10052858
DOI
10.1109/IPAS55744.2022.10052858
Google Scholar | BibTeX | DOI