The pervasive proliferation of digital technologies and interconnected systems has heightened the necessity for comprehensive cybersecurity measures in computer technological know-how. While deep gaining knowledge of (DL) has turn out to be a effective tool for bolstering security, its effectiveness is being examined via malicious hacking. Cybersecurity has end up an trouble of essential importance inside the cutting-edge virtual world. By making it feasible to become aware of and respond to threats in actual time, Deep Learning is a important issue of progressed security. Adversarial assaults, interpretability of models, and a lack of categorized statistics are all obstacles that want to be studied further with the intention to support DL-based totally security solutions. The protection and reliability of DL in our on-line world relies upon on being able to triumph over those boundaries. The present studies presents a unique method for strengthening DL-based totally cybersecurity, known as name dynamic adverse resilience for deep learning-based totally cybersecurity (DARDL-C). DARDL-C gives a dynamic and adaptable framework to counter antagonistic assaults by using combining adaptive neural community architectures with ensemble learning, real-time threat tracking, risk intelligence integration, explainable AI (XAI) for version interpretability, and reinforcement getting to know for adaptive defense techniques. The cause of this generation is to make DL fashions more secure and proof against the constantly transferring nature of online threats. The importance of simulation evaluation in determining DARDL-C s effectiveness in practical settings with out compromising genuine safety is important. Professionals and researchers can compare the efficacy and versatility of DARDL-C with the aid of simulating realistic threats in managed contexts. This gives precious insights into the machine s strengths and regions for improvement.
Authored by D. Poornima, A. Sheela, Shamreen Ahamed, P. Kathambari
Deep learning models are being utilized and further developed in many application domains, but challenges still exist regarding their interpretability and consistency. Interpretability is important to provide users with transparent information that enhances the trust between the user and the learning model. It also gives developers feedback to improve the consistency of their deep learning models. In this paper, we present a novel architectural design to embed interpretation into the architecture of the deep learning model. We apply dynamic pixel-wised weights to input images and produce a highly correlated feature map for classification. This feature map is useful for providing interpretation and transparent information about the decision-making of the deep learning model while keeping full context about the relevant feature information compared to previous interpretation algorithms. The proposed model achieved 92\% accuracy for CIFAR 10 classifications without finetuning the hyperparameters. Furthermore, it achieved a 20\% accuracy under 8/255 PGD adversarial attack for 100 iterations without any defense method, indicating extra natural robustness compared to other Convolutional Neural Network (CNN) models. The results demonstrate the feasibility of the proposed architecture.
Authored by Weimin Zhao, Qusay Mahmoud, Sanaa Alwidian
In the realm of agriculture, where crop health is integral to global food security, Our focus is on the early detection of crop diseases. Leveraging Convolutional Neural Networks (CNNs) on a diverse dataset of crop images, our study focuses on the development, training, and optimization of these networks to achieve accurate and timely disease classification. The first segment demonstrates the efficacy of CNN architecture and optimization strategy, showcasing the potential of deep learning models in automating the identification process. The synergy of robust disease detection and interpretability through Explainable Artificial Intelligence (XAI) presented in this work marks a significant stride toward bridging the gap between advanced technology and precision agriculture. By employing visualization, the research seeks to unravel the decision-making processes of our models. XAI Visualization method emerges as notably superior in terms of accuracy, hinting at its better identification of the disease, this method achieves an accuracy of 89.75\%, surpassing both the heat map model and the LIME explanation method. This not only enhances the transparency and trustworthiness of the predictions but also provides invaluable insights for end-users, allowing them to comprehend the diagnostic features considered by the complex algorithm.
Authored by Priyadarshini Patil, Sneha Pamali, Shreya Devagiri, A Sushma, Jyothi Mirje
The Zero-trust security architecture is a paradigm shift toward resilient cyber warfare. Although Intrusion Detection Systems (IDS) have been widely adopted within military operations to detect malicious traffic and ensure instant remediation against attacks, this paper proposed an explainable adversarial mitigation approach specifically designed for zero-trust cyber warfare scenarios. It aims to provide a transparent and robust defense mechanism against adversarial attacks, enabling effective protection and accountability for increased resilience against attacks. The simulation results show the balance of security and trust within the proposed parameter protection model achieving a high F1-score of 94\%, a least test loss of 0.264, and an adequate detection time of 0.34s during the prediction of attack types.
Authored by Ebuka Nkoro, Cosmas Nwakanma, Jae-Min Lee, Dong-Seong Kim
With UAVs on the rise, accurate detection and identification are crucial. Traditional unmanned aerial vehicle (UAV) identification systems involve opaque decision-making, restricting their usability. This research introduces an RF-based Deep Learning (DL) framework for drone recognition and identification. We use cutting-edge eXplainable Artificial Intelligence (XAI) tools, SHapley Additive Explanations (SHAP), and Local Interpretable Model-agnostic Explanations(LIME). Our deep learning model uses these methods for accurate, transparent, and interpretable airspace security. With 84.59\% accuracy, our deep-learning algorithms detect drone signals from RF noise. Most crucially, SHAP and LIME improve UAV detection. Detailed explanations show the model s identification decision-making process. This transparency and interpretability set our system apart. The accurate, transparent, and user-trustworthy model improves airspace security.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
This study addresses the critical need to secure VR network communication from non-immersive attacks, employing an intrusion detection system (IDS). While deep learning (DL) models offer advanced solutions, their opacity as "black box" models raises concerns. Recognizing this gap, the research underscores the urgency for DL-based explainability, enabling data analysts and cybersecurity experts to grasp model intricacies. Leveraging sensed data from IoT devices, our work trains a DL-based model for attack detection and mitigation in the VR network, Importantly, we extend our contribution by providing comprehensive global and local interpretations of the model’s decisions post-evaluation using SHAP-based explanation.
Authored by Urslla Izuazu, Dong-Seong Kim, Jae Lee
Explainable AI is an emerging field that aims to address how black-box decisions of AI systems are made, by attempting to understand the steps and models involved in this decision-making. Explainable AI in manufacturing is supposed to deliver predictability, agility, and resiliency across targeted manufacturing apps. In this context, large amounts of data, which can be of high sensitivity and various formats need to be securely and efficiently handled. This paper proposes an Asset Management and Secure Sharing solution tailored to the Explainable AI and Manufacturing context in order to tackle this challenge. The proposed asset management architecture enables an extensive data management and secure sharing solution for industrial data assets. Industrial data can be pulled, imported, managed, shared, and tracked with a high level of security using this design. This paper describes the solution´s overall architectural design and gives an overview of the functionalities and incorporated technologies of the involved components, which are responsible for data collection, management, provenance, and sharing as well as for overall security.
Authored by Sangeetha Reji, Jonas Hetterich, Stamatis Pitsios, Vasilis Gkolemi, Sergi Perez-Castanos, Minas Pertselakis
The interest in metaverse applications by existing industries has seen massive growth thanks to the accelerated pace of research in key technological fields and the shift towards virtual interactions fueled by the Covid-19 pandemic. One key industry that can benefit from the integration into the metaverse is healthcare. The potential to provide enhanced care for patients affected by multiple health issues, from standard afflictions to more specialized pathologies, is being explored through the fabrication of architectures that can support metaverse applications. In this paper, we focus on the persistent issues of lung cancer detection, monitoring, and treatment, to propose MetaLung, a privacy and integrity-preserving architecture on the metaverse. We discuss the use cases to enable remote patient-doctor interactions, patient constant monitoring, and remote care. By leveraging technologies such as digital twins, edge computing, explainable AI, IoT, and virtual/augmented reality, we propose how the system could provide better assistance to lung cancer patients and suggest individualized treatment plans to the doctors based on their information. In addition, we describe the current implementation state of the AI-based Decision Support System for treatment selection, I3LUNG, and the current state of patient data collection.
Authored by Michele Zanitti, Mieszko Ferens, Alberto Ferrarin, Francesco Trovò, Vanja Miskovic, Arsela Prelaj, Ming Shen, Sokol Kosta
In the progressive development towards 6G, the ROBUST-6G initiative aims to provide fundamental contributions to developing data-driven, AIIML-based security solutions to meet the new concerns posed by the dynamic nature of forth-coming 6G services and networks in the future cyber-physical continuum. This aim has to be accompanied by the transversal objective of protecting AIIML systems from security attacks and ensuring the privacy of individuals whose data are used in AI-empowered systems. ROBUST-6G will essentially investigate the security and robustness of distributed intelligence, enhancing privacy and providing transparency by leveraging explainable AIIML (XAI). Another objective of ROBUST-6G is to promote green and sustainable AIIML methodologies to achieve energy efficiency in 6G network design. The vision of ROBUST-6G is to optimize the computation requirements and minimize the consumed energy while providing the necessary performance for AIIML-driven security functionalities; this will enable sustainable solutions across society while suppressing any adverse effects. This paper aims to initiate the discussion and to highlight the key goals and milestones of ROBUST-6G, which are important for investigation towards a trustworthy and secure vision for future 6G networks.
Authored by Bartlomiej Siniarski, Chamara Sandeepa, Shen Wang, Madhusaska Liyanage, Cem Ayyildiz, Veli Yildirim, Hakan Alakoca, Fatma Kesik, Betül Paltun, Giovanni Perin, Michele Rossi, Stefano Tomasin, Arsenia Chorti, Pietro Giardina, Alberto Pércz, José Valero, Tommy Svensson, Nikolaos Pappas, Marios Kountouris
In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
The fixed security solutions and related security configurations may no longer meet the diverse requirements of 6G networks. Open Radio Access Network (O-RAN) architecture is going to be one key entry point to 6G where the direct user access is granted. O-RAN promotes the design, deployment and operation of the RAN with open interfaces and optimized by intelligent controllers. O-RAN networks are to be implemented as multi-vendor systems with interoperable components and can be programmatically optimized through centralized abstraction layer and data driven closed-loop control. However, since O-RAN contains many new open interfaces and data flows, new security issues may emerge. Providing the recommendations for dynamic security policy adjustments by considering the energy availability and risk or security level of the network is something lacking in the current state-of-the-art. When the security process is managed and executed in an autonomous way, it must also assure the transparency of the security policy adjustments and provide the reasoning behind the adjustment decisions to the interested parties whenever needed. Moreover, the energy consumption for such security solutions are constantly bringing overhead to the networking devices. Therefore, in this paper we discuss XAI based green security architecture for resilient open radio access networks in 6G known as XcARet for providing cognitive and transparent security solutions for O-RAN in a more energy efficient manner.
Authored by Pawani Porambage, Jarno Pinola, Yasintha Rumesh, Chen Tao, Jyrki Huusko
6G networks are beginning to take shape, and it is envisaged that they will be made up of networks from different vendors, and with different technologies, in what is known as the network-of-networks. The topology will be constantly changing, allowing it to adapt to the capacities available at any given moment. 6G networks will be managed automatically and natively by AI, but allowing direct management of learning by technical teams through Explainable AI. In this context, security becomes an unprecedented challenge. In this paper we present a flexible architecture that integrates the necessary modules to respond to the needs of 6G, focused on managing security, network and services through choreography intents that coordinate the capabilities of different stakeholders to offer advanced services.
Authored by Rodrigo Asensio-Garriga, Alejandro Zarca, Antonio Skarmeta
With the rapid development of cloud computing services and big data applications, the number of data centers is proliferating, and with it, the problem of energy consumption in data centers is becoming more and more serious. Data center energy-saving has received more and more attention as a way to reduce carbon emissions and power costs. The main energy consumption of data centers lies in IT equipment energy consumption and end air conditioning energy consumption. In this paper, we propose a data center energy-saving application system based on fog computing architecture to reduce air conditioning energy consumption, and thus reduce data center energy consumption. Specifically, the intelligent module is placed in the fog node to take advantage of the low latency, proximal computing, and proximal storage of fog computing to shorten the network call link and improve the stability of acquiring energy-saving policies and the frequency of energy-saving regulation, thus solving the disadvantages of high latency and instability in the energy-saving approach of cloud computing architecture. The AI technology is used in the intelligent module to generate energy-saving strategies and remotely regulate the end air conditioners to achieve better energy-saving effects. This solves the shortcomings of the traditional manual regulation based on expert experience with low adjustment frequency and serious loss of cooling capacity of the terminal air conditioner. According to the experimental results, statistics show that compared with the traditional manual regulation based on expert experience, the data center energy-saving application based on fog computing can operate safely and efficiently, and reduce the PUE to 1.04. Compared with the AI energy-saving strategy based on cloud computing, the AI energy-saving strategy based on fog computing generates strategies faster and with lower latency, and the speed is increased by 29.84\%.
Authored by Yazhen Zhang, Fei Hu, Yisa Han, Weiye Meng, Zhou Guo, Chunfang Li
AI systems face potential hardware security threats. Existing AI systems generally use the heterogeneous architecture of CPU + Intelligent Accelerator, with PCIe bus for communication between them. Security mechanisms are implemented on CPUs based on the hardware security isolation architecture. But the conventional hardware security isolation architecture does not include the intelligent accelerator on the PCIe bus. Therefore, from the perspective of hardware security, data offloaded to the intelligent accelerator face great security risks. In order to effectively integrate intelligent accelerator into the CPU’s security mechanism, a novel hardware security isolation architecture is presented in this paper. The PCIe protocol is extended to be security-aware by adding security information packaging and unpacking logic in the PCIe controller. The hardware resources on the intelligent accelerator are isolated in fine-grained. The resources classified into the secure world can only be controlled and used by the software of CPU’s trusted execution environment. Based on the above hardware security isolation architecture, a security isolation spiking convolutional neural network accelerator is designed and implemented in this paper. The experimental results demonstrate that the proposed security isolation architecture has no overhead on the bandwidth and latency of the PCIe controller. The architecture does not affect the performance of the entire hardware computing process from CPU data offloading, intelligent accelerator computing, to data returning to CPU. With low hardware overhead, this security isolation architecture achieves effective isolation and protection of input data, model, and output data. And this architecture can effectively integrate hardware resources of intelligent accelerator into CPU’s security isolation mechanism.
Authored by Rui Gong, Lei Wang, Wei Shi, Wei Liu, JianFeng Zhang
Edge computing enables the computation and analytics capabilities to be brought closer to data sources. The available literature on AI solutions for edge computing primarily addresses just two edge layers. The upper layer can directly communicate with the cloud and comprises one or more IoT edge devices that gather sensing data from IoT devices present in the lower layer. However, industries mainly adopt a multi-layered architecture, referred to as the ISA-95 standard, to isolate and safeguard their assets. In this architecture, only the upper layer is connected to the cloud, while the lower layers of the hierarchy get to interact only with the neighbouring layers. Due to these added intermediate layers (and IoT edge devices) between the top and lower layers, existing AI solutions for typical two-layer edge architectures may not be directly applicable in this scenario. Moreover, not all industries prefer to send and store their private data in the cloud. Implementing AI solutions tailored to a hierarchical edge architecture would increase response time and maintain the same degree of security by working within the ISA-95-compliant network architecture. This paper explores a possible strategy for deploying a centralized federated learning-based AI solution in a hierarchical edge architecture and demonstrates its efficacy through a real deployment scenario.
Authored by Narendra Bisht, Subhasri Duttagupta
The development of 5G, cloud computing, artificial intelligence (AI) and other new generation information technologies has promoted the rapid development of the data center (DC) industry, which directly increase severe energy consumption and carbon emissions problem. In addition to traditional engineering based methods, AI based technology has been widely used in existing data centers. However, the existing AI model training schemes are time-consuming and laborious. To tackle this issues, we propose an automated training and deployment platform for AI modes based on cloud-edge architecture, including the processes of data processing, data annotation, model training optimization, and model publishing. The proposed system can generate specific models based on the room environment and realize standardization and automation of model training, which is helpful for large-scale data center scenarios. The simulation and experimental results show that the proposed solution can reduce the time required of single model training by 76.2\%, and multiple training tasks can run concurrently. Therefore, it can adapt to the large-scale energy-saving scenario and greatly improve the model iteration efficiency, which improves the energy-saving rate and help green energy conservation for data centers.
Authored by Chunfang Li, Zhou Guo, Xingmin He, Fei Hu, Weiye Meng
Foundation models, such as large language models (LLMs), have been widely recognised as transformative AI technologies due to their capabilities to understand and generate content, including plans with reasoning capabilities. Foundation model based agents derive their autonomy from the capabilities of foundation models, which enable them to autonomously break down a given goal into a set of manageable tasks and orchestrate task execution to meet the goal. Despite the huge efforts put into building foundation model based agents, the architecture design of the agents has not yet been systematically explored. Also, while there are significant benefits of using agents for planning and execution, there are serious considerations regarding responsible AI related software quality attributes, such as security and accountability. Therefore, this paper presents a pattern-oriented reference architecture that serves as guidance when designing foundation model based agents. We evaluate the completeness and utility of the proposed reference architecture by mapping it to the architecture of two real-world agents.
Authored by Qinghua Lu, Liming Zhu, Xiwei Xu, Zhenchang Xing, Stefan Harrer, Jon Whittle
The complex landscape of multi-cloud settings is the result of the fast growth of cloud computing and the ever-changing needs of contemporary organizations. Strong cyber defenses are of fundamental importance in this setting. In this study, we investigate the use of AI in hybrid cloud settings for the purpose of multi-cloud security management. To help businesses improve their productivity and resilience, we provide a mathematical model for optimal resource allocation. Our methodology streamlines dynamic threat assessments, making it easier for security teams to efficiently priorities vulnerabilities. The advent of a new age of real-time threat response is heralded by the incorporation of AI-driven security tactics. The technique we use has real-world implications that may help businesses stay ahead of constantly changing threats. In the future, scientists will focus on autonomous security systems, interoperability, ethics, interoperability, and cutting-edge AI models that have been validated in the real world. This study provides a detailed road map for businesses to follow as they navigate the complex cybersecurity landscape of multi-cloud settings, therefore promoting resilience and agility in this era of digital transformation.
Authored by Srimathi. J, K. Kanagasabapathi, Kirti Mahajan, Shahanawaj Ahamad, E. Soumya, Shivangi Barthwal
As a result of globalization, the COVID-19 pandemic and the migration of data to the cloud, the traditional security measures where an organization relies on a security perimeter and firewalls do not work. There is a shift to a concept whereby resources are not being trusted, and a zero-trust architecture (ZTA) based on a zero-trust principle is needed. Adapting zero trust principles to networks ensures that a single insecure Application Protocol Interface (API) does not become the weakest link comprising of Critical Data, Assets, Application and Services (DAAS). The purpose of this paper is to review the use of zero trust in the security of a network architecture instead of a traditional perimeter. Different software solutions for implementing secure access to applications and services for remote users using zero trust network access (ZTNA) is also summarized. A summary of the author s research on the qualitative study of “Insecure Application Programming Interface in Zero Trust Networks” is also discussed. The study showed that there is an increased usage of zero trust in securing networks and protecting organizations from malicious cyber-attacks. The research also indicates that APIs are insecure in zero trust environments and most organization are not aware of their presence.
Authored by Farhan Qazi
In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
We propose a conceptual framework, named "AI Security Continuum," consisting of dimensions to deal with challenges of the breadth of the AI security risk sustainably and systematically under the emerging context of the computing continuum as well as continuous engineering. The dimensions identified are the continuum in the AI computing environment, the continuum in technical activities for AI, the continuum in layers in the overall architecture, including AI, the level of AI automation, and the level of AI security measures. We also prospect an engineering foundation that can efficiently and effectively raise each dimension.
Authored by Hironori Washizaki, Nobukazu Yoshioka
In this paper, we design and develop a new multimedia distribution platform that mainly utilizes containerization and microservice architecture technologies. Using our approach, the multimedia service source code located in a repository such as Git can be built into a container image for distribution and management, and the process of delivering it to the target edge device can be performed through a pipeline. In addition, distributed edge devices can be built into clusters with various connection profiles and utilized for services. Real-time monitoring functions are provided to ensure stable service operation even after the service is deployed. To implement this complex service platform, we follow the microservice architecture method. Stable operation was confirmed even during an operational test period of over a year. This technology is expected to help deploy multimedia services conveniently and quickly and manage them stably and efficiently.
Authored by Jongbin Park
The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS• Software and its engineering Software architectures; • Information systems World Wide Web; • Security and privacy Privacy protections; • Social and professional topics Copyrights; • Computing methodologies Machine learning.
Authored by Dawen Zhang, Boming Xia, Yue Liu, Xiwei Xu, Thong Hoang, Zhenchang Xing, Mark Staples, Qinghua Lu, Liming Zhu
As artificial intelligent models continue to grow in their capacity and sophistication, they are often trusted with very sensitive information. In the sub-field of adversarial machine learning, developments are geared solely towards finding reliable methods to systematically erode the ability of artificial intelligent systems to perform as intended. These techniques can cause serious breaches of security, interruptions to major systems, and irreversible damage to consumers. Our research evaluates the effects of various white box adversarial machine learning attacks on popular computer vision deep learning models leveraging a public X-ray dataset from the National Institutes of Health (NIH). We make use of several experiments to gauge the feasibility of developing deep learning models that are robust to adversarial machine learning attacks by taking into account different defense strategies, such as adversarial training, to observe how adversarial attacks evolve over time. Our research details how a variety white box attacks effect different components of InceptionNet, DenseNet, and ResNeXt and suggest how the models can effectively defend against these attacks.
Authored by Ilyas Bankole-Hameed, Arav Parikh, Josh Harguess
In coalition military operations, secure and effective information sharing is vital to the success of the mission. Protected Core Networking (PCN) provides a way for allied nations to securely interconnect their networks to facilitate the sharing of data. PCN, and military networks in general, face unique security challenges. Heterogeneous links and devices are deployed in hostile environments, while motivated adversaries launch cyberattacks at ever-increasing pace, volume, and sophistication. Humans cannot defend these systems and networks, not only because the volume of cyber events is too great, but also because there are not enough cyber defenders situated at the tactical edge. Thus, autonomous, machine-speed cyber defense capabilities are needed to protect mission-critical information systems from cyberattacks and system failures. This paper discusses the motivation for adding autonomous cyber defense capabilities to PCN and outlines a path toward implementing these capabilities. We propose to leverage existing reference architectures, frameworks, and enabling technologies, in order to adapt autonomous cyber defense concepts to the PCN context. We highlight expected challenges of implementing autonomous cyber defense agents for PCN, including: defining the state space and action space that will be necessary for monitoring and for generating recovery plans; implementing a suite of models, sensors, actuators, and agents specific to the PCN context; and designing metrics and experiments to measure the efficacy of such a system.
Authored by Alexander Velazquez, Joseph Mathews, Roberto Lopes, Tracy Braun, Frederica Free-Nelson