Anomaly detection and its explanation is important in many research areas such as intrusion detection, fraud detection, unknown attack detection in network traffic and logs. It is challenging to identify the cause or explanation of “why one instance is an anomaly?” and the other is not due to its unbounded and lack of supervisory nature. The answer to this question is possible with the emerging technique of explainable artificial intelligence (XAI). XAI provides tools and techniques to interpret and explain the output and working of complex models such as Deep Learning (DL). This paper aims to detect and explain network anomalies with XAI, kernelSHAP method. The same approach is used to improve the network anomaly detection model in terms of accuracy, recall, precision and f-score. The experiment is conduced with the latest CICIDS2017 dataset. Two models are created (Model\_1 and OPT\_Model) and compared. The overall accuracy and F-score of OPT\_Model (when trained in unsupervised way) are 0.90 and 0.76, respectively.
Authored by Khushnaseeb Roshan, Aasim Zafar
Anomaly detection and its explanation is important in many research areas such as intrusion detection, fraud detection, unknown attack detection in network traffic and logs. It is challenging to identify the cause or explanation of “why one instance is an anomaly?” and the other is not due to its unbounded and lack of supervisory nature. The answer to this question is possible with the emerging technique of explainable artificial intelligence (XAI). XAI provides tools and techniques to interpret and explain the output and working of complex models such as Deep Learning (DL). This paper aims to detect and explain network anomalies with XAI, kernelSHAP method. The same approach is used to improve the network anomaly detection model in terms of accuracy, recall, precision and f-score. The experiment is conduced with the latest CICIDS2017 dataset. Two models are created (Model\_1 and OPT\_Model) and compared. The overall accuracy and F-score of OPT\_Model (when trained in unsupervised way) are 0.90 and 0.76, respectively.
Authored by Khushnaseeb Roshan, Aasim Zafar
Bigdata and IoT technologies are developing rapidly. Accordingly, consideration of network security is also emphasized, and efficient intrusion detection technology is required for detecting increasingly sophisticated network attacks. In this study, we propose an efficient network anomaly detection method based on ensemble and unsupervised learning. The proposed model is built by training an autoencoder, a representative unsupervised deep learning model, using only normal network traffic data. The anomaly score of the detection target data is derived by ensemble the reconstruction loss and the Mahalanobis distances for each layer output of the trained autoencoder. By applying a threshold to this score, network anomaly traffic can be efficiently detected. To evaluate the proposed model, we applied our method to UNSW-NB15 dataset. The results show that the overall performance of the proposed method is superior to those of the model using only the reconstruction loss of the autoencoder and the model applying the Mahalanobis distance to the raw data.
Authored by Donghun Yang, Myunggwon Hwang
The Internet of Things (IoT) heralds a innovative generation in communication via enabling regular gadgets to supply, receive, and percentage records easily. IoT applications, which prioritise venture automation, aim to present inanimate items autonomy; they promise increased consolation, productivity, and automation. However, strong safety, privateness, authentication, and recuperation methods are required to understand this goal. In order to assemble give up-to-quit secure IoT environments, this newsletter meticulously evaluations the security troubles and risks inherent to IoT applications. It emphasises the vital necessity for architectural changes.The paper starts by conducting an examination of security worries before exploring emerging and advanced technologies aimed at nurturing a sense of trust, in Internet of Things (IoT) applications. The primary focus of the discussion revolves around how these technologies aid in overcoming security challenges and fostering an ecosystem for IoT.
Authored by Pranav A, Sathya S, HariHaran B
Nowadays, anomaly-based network intrusion detection system (NIDS) still have limited real-world applications; this is particularly due to false alarms, a lack of datasets, and a lack of confidence. In this paper, we propose to use explainable artificial intelligence (XAI) methods for tackling these issues. In our experimentation, we train a random forest (RF) model on the NSL-KDD dataset, and use SHAP to generate global explanations. We find that these explanations deviate substantially from domain expertise. To shed light on the potential causes, we analyze the structural composition of the attack classes. There, we observe severe imbalances in the number of records per attack type subsumed in the attack classes of the NSL-KDD dataset, which could lead to generalization and overfitting regarding classification. Hence, we train a new RF classifier and SHAP explainer directly on the attack types. Classification performance is considerably improved, and the new explanations are matching the expectations based on domain knowledge better. Thus, we conclude that the imbalances in the dataset bias classification and consequently also the results of XAI methods like SHAP. However, the XAI methods can also be employed to find and debug issues and biases in the data and the applied model. Furthermore, the debugging results in higher trustworthiness of anomaly-based NIDS.
Authored by Eric Lanfer, Sophia Sylvester, Nils Aschenbruck, Martin Atzmueller
Artificial Intelligence used in future networks is vulnerable to biases, misclassifications, and security threats, which seeds constant scrutiny in accountability. Explainable AI (XAI) methods bridge this gap in identifying unaccounted biases in black-box AI/ML models. However, scaffolding attacks can hide the internal biases of the model from XAI methods, jeopardizing any auditory or monitoring processes, service provisions, security systems, regulators, auditors, and end-users in future networking paradigms, including Intent-Based Networking (IBN). For the first time ever, we formalize and demonstrate a framework on how an attacker would adopt scaffoldings to deceive the security auditors in Network Intrusion Detection Systems (NIDS). Furthermore, we propose a detection method that auditors can use to detect the attack efficiently. We rigorously test the attack and detection methods using the NSL-KDD. We then simulate the attack on 5G network data. Our simulation illustrates that the attack adoption method is successful, and the detection method can identify an affected model with extremely high confidence.
Authored by Thulitha Senevirathna, Bartlomiej Siniarski, Madhusanka Liyanage, Shen Wang
Increasing automation in vehicles enabled by increased connectivity to the outside world has exposed vulnerabilities in previously siloed automotive networks like controller area networks (CAN). Attributes of CAN such as broadcast-based communication among electronic control units (ECUs) that lowered deployment costs are now being exploited to carry out active injection attacks like denial of service (DoS), fuzzing, and spoofing attacks. Research literature has proposed multiple supervised machine learning models deployed as Intrusion detection systems (IDSs) to detect such malicious activity; however, these are largely limited to identifying previously known attack vectors. With the ever-increasing complexity of active injection attacks, detecting zero-day (novel) attacks in these networks in real-time (to prevent propagation) becomes a problem of particular interest. This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks, which is trained only on benign (attack-free) CAN messages. We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform as our IDS-ECU system for integration. The proposed model successfully achieves equal or higher classification accuracy (\textgreater 99.5\%) on unseen DoS, fuzzing, and spoofing attacks from a publicly available attack dataset when compared to the state-of-the-art unsupervised learning-based IDSs. Additionally, by cleverly overlapping IDS operation on a window of CAN messages with the reception, the model is able to meet line-rate detection (0.43 ms per window) of high-speed CAN, which when coupled with the low energy consumption per inference, makes this architecture ideally suited for detecting zero-day attacks on critical CAN networks.
Authored by Shashwat Khandelwal, Shanker Shreejith
In the evolving landscape of Internet of Things (IoT) security, the need for continuous adaptation of defenses is critical. Class Incremental Learning (CIL) can provide a viable solution by enabling Machine Learning (ML) and Deep Learning (DL) models to ( i) learn and adapt to new attack types (0-day attacks), ( ii) retain their ability to detect known threats, (iii) safeguard computational efficiency (i.e. no full re-training). In IoT security, where novel attacks frequently emerge, CIL offers an effective tool to enhance Intrusion Detection Systems (IDS) and secure network environments. In this study, we explore how CIL approaches empower DL-based IDS in IoT networks, using the publicly-available IoT-23 dataset. Our evaluation focuses on two essential aspects of an IDS: ( a) attack classification and ( b) misuse detection. A thorough comparison against a fully-retrained IDS, namely starting from scratch, is carried out. Finally, we place emphasis on interpreting the predictions made by incremental IDS models through eXplainable AI (XAI) tools, offering insights into potential avenues for improvement.
Authored by Francesco Cerasuolo, Giampaolo Bovenzi, Christian Marescalco, Francesco Cirillo, Domenico Ciuonzo, Antonio Pescapè
Significant progress has been made towards developing Deep Learning (DL) in Artificial Intelligence (AI) models that can make independent decisions. However, this progress has also highlighted the emergence of malicious entities that aim to manipulate the outcomes generated by these models. Due to increasing complexity, this is a concerning issue in various fields, such as medical image classification, autonomous vehicle systems, malware detection, and criminal justice. Recent research advancements have highlighted the vulnerability of these classifiers to both conventional and adversarial assaults, which may skew their results in both the training and testing stages. The Systematic Literature Review (SLR) aims to analyse traditional and adversarial attacks comprehensively. It evaluates 45 published works from 2017 to 2023 to better understand adversarial attacks, including their impact, causes, and standard mitigation approaches.
Authored by Tarek Ali, Amna Eleyan, Tarek Bejaoui
This study presents a novel approach for fortifying network security systems, crucial for ensuring network reliability and survivability against evolving cyber threats. Our approach integrates Explainable Artificial Intelligence (XAI) with an en-semble of autoencoders and Linear Discriminant Analysis (LDA) to create a robust framework for detecting both known and elusive zero-day attacks. We refer to this integrated method as AE- LDA. Our method stands out in its ability to effectively detect both known and previously unidentified network intrusions. By employing XAI for feature selection, we ensure improved inter-pretability and precision in identifying key patterns indicative of network anomalies. The autoencoder ensemble, trained on benign data, is adept at recognising a broad spectrum of network behaviours, thereby significantly enhancing the detection of zero-day attacks. Simultaneously, LDA aids in the identification of known threats, ensuring a comprehensive coverage of potential network vulnerabilities. This hybrid model demonstrates superior performance in anomaly detection accuracy and complexity management. Our results highlight a substantial advancement in network intrusion detection capabilities, showcasing an effective strategy for bolstering network reliability and resilience against a diverse range of cyber threats.
Authored by Fatemeh Stodt, Fabrice Theoleyre, Christoph Reich
The last decade has shown that networked cyber-physical systems (NCPS) are the future of critical infrastructure such as transportation systems and energy production. However, they have introduced an uncharted territory of security vulnerabilities and a wider attack surface, mainly due to network openness and the deeply integrated physical and cyber spaces. On the other hand, relying on manual analysis of intrusion detection alarms might be effective in stopping run-of-the-mill automated probes but remain useless against the growing number of targeted, persistent, and often AI-enabled attacks on large-scale NCPS. Hence, there is a pressing need for new research directions to provide advanced protection. This paper introduces a novel security paradigm for emerging NCPS, namely Autonomous Cyber-Physical Defense (ACPD). We lay out the theoretical foundations and describe the methods for building autonomous and stealthy cyber-physical defense agents that are able to dynamically hunt, detect, and respond to intelligent and sophisticated adversaries in real time without human intervention. By leveraging the power of game theory and multi-agent reinforcement learning, these self-learning agents will be able to deploy complex cyber-physical deception scenarios on the fly, generate optimal and adaptive security policies without prior knowledge of potential threats, and defend themselves against adversarial learning. Nonetheless, serious challenges including trustworthiness, scalability, and transfer learning are yet to be addressed for these autonomous agents to become the next-generation tools of cyber-physical defense.
Authored by Talal Halabi, Mohammad Zulkernine
Attacks against computer system are viewed to be the most serious threat in the modern world. A zero-day vulnerability is an unknown vulnerability to the vendor of the system. Deep learning techniques are widely used for anomaly-based intrusion detection. The technique gives a satisfactory result for known attacks but for zero-day attacks the models give contradictory results. In this work, at first, two separate environments were setup to collect training and test data for zero-day attack. Zero-day attack data were generated by simulating real-time zero-day attacks. Ranking of the features from the train and test data was generated using explainable AI (XAI) interface. From the collected training data more attack data were generated by applying time series generative adversarial network (TGAN) for top 12 features. The train data was concatenated with the AWID dataset. A hybrid deep learning model using Long short-term memory (LSTM) and Convolutional neural network (CNN) was developed to test the zero-day data against the GAN generated concatenated dataset and the original AWID dataset. Finally, it was found that the result using the concatenated dataset gives better performance with 93.53\% accuracy, where the result from only AWID dataset gives 84.29\% accuracy.
Authored by Md. Asaduzzaman, Md. Rahman
Zero Day Threats (ZDT) are novel methods used by malicious actors to attack and exploit information technology (IT) networks or infrastructure. In the past few years, the number of these threats has been increasing at an alarming rate and have been costing organizations millions of dollars to remediate. The increasing expansion of network attack surfaces and the exponentially growing number of assets on these networks necessitate the need for a robust AI-based Zero Day Threat detection model that can quickly analyze petabyte-scale data for potentially malicious and novel activity. In this paper, the authors introduce a deep learning based approach to Zero Day Threat detection that can generalize, scale, and effectively identify threats in near real-time. The methodology utilizes network flow telemetry augmented with asset-level graph features, which are passed through a dual-autoencoder structure for anomaly and novelty detection respectively. The models have been trained and tested on four large scale datasets that are representative of real-world organizational networks and they produce strong results with high precision and recall values. The models provide a novel methodology to detect complex threats with low false positive rates that allow security operators to avoid alert fatigue while drastically reducing their mean time to response with near-real-time detection. Furthermore, the authors also provide a novel, labelled, cyber attack dataset generated from adversarial activity that can be used for validation or training of other models. With this paper, the authors’ overarching goal is to provide a novel architecture and training methodology for cyber anomaly detectors that can generalize to multiple IT networks with minimal to no retraining while still maintaining strong performance.
Authored by Christopher Redino, Dhruv Nandakumar, Robert Schiller, Kevin Choi, Abdul Rahman, Edward Bowen, Aaron Shaha, Joe Nehila, Matthew Weeks
A growing number of attacks and the introduction of new security standards, e.g. ISO 21434, are increasingly shifting the focus of industry and research to the cybersecurity of vehicles. Being cyber-physical systems, compromised vehicles can pose a safety risk to occupants and the environment. Updates over the air and monitoring of the vehicle fleet over its entire lifespan are therefore established in current and future vehicles. Elementary components of such a strategy are security sensors in the form of firewalls and intrusion detection systems, for example, and an operations center where monitoring and response activities are coordinated. A critical step in defending against, detecting, and remediating attacks is providing knowledge about the vehicle and fleet context. Whether a vehicle is driving on the highway or parked at home, what software version is installed, or what security incidents have occurred affect the legitimacy of data and network traffic. However, current security measures lack an understanding of how to operate in an adjusted manner in different contexts. This work is therefore dedicated to a concept to make security measures for vehicles context-aware. We present our approach, which consists of an object-oriented model of relevant context information within the vehicle and a Knowledge Graph for the fleet. With this approach, various use cases can be addressed, according to the different requirements for the use of context knowledge in the vehicle and operations center.
Authored by Daniel Grimm, Eric Sax
Developing network intrusion detection systems (IDS) presents significant challenges due to the evolving nature of threats and the diverse range of network applications. Existing IDSs often struggle to detect dynamic attack patterns and covert attacks, leading to misidentified network vulnerabilities and degraded system performance. These requirements must be met via dependable, scalable, effective, and adaptable IDS designs. Our IDS can recognise and classify complex network threats by combining the Deep Q-Network (DQN) algorithm with distributed agents and attention techniques.. Our proposed distributed multi-agent IDS architecture has many advantages for guiding an all-encompassing security approach, including scalability, fault tolerance, and multi-view analysis. We conducted experiments using industry-standard datasets including NSL-KDD and CICIDS2017 to determine how well our model performed. The results show that our IDS outperforms others in terms of accuracy, precision, recall, F1-score, and false-positive rate. Additionally, we evaluated our model s resistance to black-box adversarial attacks, which are commonly used to take advantage of flaws in machine learning. Under these difficult circumstances, our model performed quite well.We used a denoising autoencoder (DAE) for further model strengthening to improve the IDS s robustness. Lastly, we evaluated the effectiveness of our zero-day defenses, which are designed to mitigate attacks exploiting unknown vulnerabilities. Through our research, we have developed an advanced IDS solution that addresses the limitations of traditional approaches. Our model demonstrates superior performance, robustness against adversarial attacks, and effective zero-day defenses. By combining deep reinforcement learning, distributed agents, attention techniques, and other enhancements, we provide a reliable and comprehensive solution for network security.
Authored by Malika Malik, Kamaljit Saini
Network intrusion detection technology has developed for more than ten years, but due to the network intrusion is complex and variable, it is impossible to determine the function of network intrusion behaviour. Combined with the research on the intrusion detection technology of the cluster system, the network security intrusion detection and mass alarms are realized. Method: This article starts with an intrusion detection system, which introduces the classification and workflow. The structure and working principle of intrusion detection system based on protocol analysis technology are analysed in detail. Results: With the help of the existing network intrusion detection in the network laboratory, the Synflood attack has successfully detected, which verified the flexibility, accuracy, and high reliability of the protocol analysis technology. Conclusion: The high-performance cluster-computing platform designed in this paper is already available. The focus of future work will strengthen the functions of the cluster-computing platform, enhancing stability, and improving and optimizing the fault tolerance mechanism.
Authored by Feng Li, Fei Shu, Mingxuan Li, Bin Wang
Envisioned to be the next-generation Internet, the metaverse faces far more security challenges due to its large scale, distributed, and decentralized nature. While traditional third-party security solutions remain certain limitations such as scalability and Single Point of Failure (SPoF), numerous wearable Augmented/Virtual Reality (AR/VR) devices with increasingly computational capacity can contribute underused resource to protect the metaverse. Realizing the potential of Collaborative Intrusion Detection System (CIDS) in the metaverse context, we propose MetaCIDS, a blockchain-based Federated Learning (FL) framework that allows metaverse users to: (i) collaboratively train an adaptable CIDS model based on their collected local data with privacy protection; (ii) utilize such the FL model to detect metaverse intrusion using the locally observed network traffic; (iii) submit verifiable intrusion alerts through blockchain transactions to obtain token-based reward. Security analysis shows that MetaCIDS can tolerate up to 33\% malicious trainers during the training of FL models, while the verifiability of alerts offer resistance to Distributed Denial of Service (DDoS) attacks. Besides, experimental results illustrate the efficiency and feasibility of MetaCIDS.
Authored by Vu Truong, Vu Nguyen, Long Le
This paper presents FBA-SDN, a novel Stellar Consensus Protocol (SCP)-based Federated Byzantine Agreement System (FBAS) approach to trustworthy Collaborative Intrusion Detection (CIDS) in Software-Defined Network (SDN) environments. The proposed approach employs the robustness of Byzantine Fault Tolerance (BFT) consensus mechanisms and the decentralized nature of blockchain ledgers to coordinate the Intrusion Detection System (IDS) operation securely. The federated architecture adopted in FBA-SDN facilitates collaborative analysis of low-confidence alert data, reaching system-wide consensus on potential intrusions. Additionally, the Quorum-based nature of the approach reduces the risk of a single point of failure (SPoF) while simultaneously improving upon the scalability offered by existing blockchain-based approaches. Through simulation, we demonstrate promising results concerning the efficacy of reaching rapid and reliable consensus on both binary and multi-class simulated intrusion data compared with the existing approaches.
Authored by John Hayes, Adel Aneiba, Mohamed Gaber, Md Islam, Raouf Abozariba
In the face of a large number of network attacks, intrusion detection system can issue early warning, indicating the emergence of network attacks. In order to improve the traditional machine learning network intrusion detection model to identify the behavior of network attacks, improve the detection accuracy and accuracy. Convolutional neural network is used to construct intrusion detection model, which has better ability to solve complex problems and better adaptability of algorithm. In order to solve the problems such as dimension explosion caused by input data, the albino PCA algorithm is used to extract data features and reduce data dimensions. For the common problem of convolutional neural networks in intrusion detection such as overfitting, Dropout layers are added before and after the fully connected layer of CNN, and Sigmoid is selected as the intrusion classification prediction function. This reduces the overfitting, improves the robustness of the intrusion detection model, and enhances the fault tolerance and generalization ability of the model to improve the accuracy of the intrusion detection model. The effectiveness of the proposed method in intrusion detection is verified by comparison and analysis of numerical examples.
Authored by Peiqing Zhang, Guangke Tian, Haiying Dong
The surveillance factor impacting the Internet-of-Things (IoT) conceptual framework has recently received significant attention from the research community. To do this, a number of surveys covering a variety of IoT-centric topics, such as intrusion detection systems, threat modeling, as well as emerging technologies, were suggested. Stability is not a problem that can be handled separately. Each layer of the IoT solutions must be designed and built with security in mind. IoT security goes beyond safeguarding the network as well as data to include attacks that could be directed at human health or even life. We discuss the IoT s security challenges in this study. We start by going over some fundamental security ideas and IoT security requirements. Following that, we look at IoT market statistics and IoT security statistics to see where it is all headed and how to make your situation better by implementing appropriate security measures.
Authored by Swati Rajput, R. Umamageswari, Rajesh Singh, Lalit Thakur, C.P Sanjay, Kalyan Chakravarthi
This paper addresses the issues of fault tolerance (FT) and intrusion detection (ID) in the Software-defined networking (SDN) environment. We design an integrated model that combines the FT-Manager as an FT mechanism and an ID-Manager, as an ID technique to collaboratively detect and mitigate threats in the SDN. The ID-Manager employs a machine learning (ML) technique to identify anomalous traffic accurately and effectively. Both techniques in the integrated model leverage the controller-switches communication for real-time network statistics collection. While the full implementation of the framework is yet to be realized, experimental evaluations have been conducted to identify the most suitable ML algorithm for ID-Manager to classify network traffic using a benchmarking dataset and various performance metrics. The principal component analysis method was utilized for feature engineering optimization, and the results indicate that the Random Forest (RF) classifier outperforms other algorithms with 99.9\% accuracy, precision, and recall. Based on these findings, the paper recommended RF as the ideal choice for ID design in the integrated model. We also stress the significance and potential benefits of the integrated model to sustain SDN network security and dependability.
Authored by Bassey Isong, Thupae Ratanang, Naison Gasela, Adnan Abu-Mahfouz
Envisioned to be the next-generation Internet, the metaverse faces far more security challenges due to its large scale, distributed, and decentralized nature. While traditional third-party security solutions remain certain limitations such as scalability and Single Point of Failure (SPoF), numerous wearable Augmented/Virtual Reality (AR/VR) devices with increasingly computational capacity can contribute underused resource to protect the metaverse. Realizing the potential of Collaborative Intrusion Detection System (CIDS) in the metaverse context, we propose MetaCIDS, a blockchain-based Federated Learning (FL) framework that allows metaverse users to: (i) collaboratively train an adaptable CIDS model based on their collected local data with privacy protection; (ii) utilize such the FL model to detect metaverse intrusion using the locally observed network traffic; (iii) submit verifiable intrusion alerts through blockchain transactions to obtain token-based reward. Security analysis shows that MetaCIDS can tolerate up to 33\% malicious trainers during the training of FL models, while the verifiability of alerts offer resistance to Distributed Denial of Service (DDoS) attacks. Besides, experimental results illustrate the efficiency and feasibility of MetaCIDS.
Authored by Vu Truong, Vu Nguyen, Long Le
Cloud computing (CC) is vulnerable to existing information technology attacks, since it extends and utilizes information technology infrastructure, applications and typical operating systems. In this manuscript, an Enhanced capsule generative adversarial network (ECGAN) with blockchain based Proof of authority consensus procedure fostered Intrusion detection (ID) system is proposed for enhancing cyber security in CC. The data are collected via NSL-KDD benchmark dataset. The input data is fed to proposed Z-Score Normalization process to eliminate the redundancy including missing values. The pre-processing output is fed to feature selection. During feature selection, extracting the optimum features on the basis of univariate ensemble feature selection (UEFS). Optimum features basis, the data are classified as normal and anomalous utilizing Enhanced capsule generative adversarial networks. Subsequently, blockchain based Proof of authority (POA) consensus process is proposed for improving the cyber security of the data in cloud computing environment. The proposed ECGAN-BC-POA-IDS method is executed in Python and the performance metrics are calculated. The proposed approach has attained 33.7\%, 25.7\%, 21.4\% improved accuracy, 24.6\%, 35.6\%, 38.9\% lower attack detection time, and 23.8\%, 18.9\%, 15.78\% lower delay than the existing methods, like Artificial Neural Network (ANN) with blockchain framework, Integrated Architecture with Byzantine Fault Tolerance consensus, and Blockchain Random Neural Network (RNN-BC) respectively.
Authored by Ravi Kanth, Prem Jacob
Network intrusion detection technology has developed for more than ten years, but due to the network intrusion is complex and variable, it is impossible to determine the function of network intrusion behaviour. Combined with the research on the intrusion detection technology of the cluster system, the network security intrusion detection and mass alarms are realized. Method: This article starts with an intrusion detection system, which introduces the classification and workflow. The structure and working principle of intrusion detection system based on protocol analysis technology are analysed in detail. Results: With the help of the existing network intrusion detection in the network laboratory, the Synflood attack has successfully detected, which verified the flexibility, accuracy, and high reliability of the protocol analysis technology. Conclusion: The high-performance cluster-computing platform designed in this paper is already available. The focus of future work will strengthen the functions of the cluster-computing platform, enhancing stability, and improving and optimizing the fault tolerance mechanism.
Authored by Feng Li, Fei Shu, Mingxuan Li, Bin Wang
Nowadays, companies, critical infrastructure and governments face cyber attacks every day ranging from simple denial-of-service and password guessing attacks to complex nationstate attack campaigns, so-called advanced persistent threats (APTs). Defenders employ intrusion detection systems (IDSs) among other tools to detect malicious activity and protect network assets. With the evolution of threats, detection techniques have followed with modern systems usually relying on some form of artificial intelligence (AI) or anomaly detection as part of their defense portfolio. While these systems are able to achieve higher accuracy in detecting APT activity, they cannot provide much context about the attack, as the underlying models are often too complex to interpret. This paper presents an approach to explain single predictions (i. e., detected attacks) of any graphbased anomaly detection systems. By systematically modifying the input graph of an anomaly and observing the output, we leverage a variation of permutation importance to identify parts of the graph that are likely responsible for the detected anomaly. Our approach treats the anomaly detection function as a black box and is thus applicable to any whole-graph explanation problems. Our results on two established datasets for APT detection (StreamSpot \& DARPA TC Engagement Three) indicate that our approach can identify nodes that are likely part of the anomaly. We quantify this through our area under baseline (AuB) metric and show how the AuB is higher for anomalous graphs. Further analysis via the Wilcoxon rank-sum test confirms that these results are statistically significant with a p-value of 0.0041\%.
Authored by Felix Welter, Florian Wilkens, Mathias Fischer