In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
Currently, research on 5G communication is focusing increasingly on communication techniques. The previous studies have primarily focused on the prevention of communications disruption. To date, there has not been sufficient research on network anomaly detection as a countermeasure against on security aspect. 5g network data will be more complex and dynamic, intelligent network anomaly detection is necessary solution for protecting the network infrastructure. However, since the AI-based network anomaly detection is dependent on data, it is difficult to collect the actual labeled data in the industrial field. Also, the performance degradation in the application process to real field may occur because of the domain shift. Therefore, in this paper, we research the intelligent network anomaly detection technique based on domain adaptation (DA) in 5G edge network in order to solve the problem caused by data-driven AI. It allows us to train the models in data-rich domains and apply detection techniques in insufficient amount of data. For Our method will contribute to AI-based network anomaly detection for improving the security for 5G edge network.
Authored by Hyun-Jin Kim, Jonghoon Lee, Cheolhee Park, Jong-Geun Park
In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
The growing deployment of IoT devices has led to unprecedented interconnection and information sharing. However, it has also presented novel difficulties with security. Using intrusion detection systems (IDS) that are based on artificial intelligence (AI) and machine learning (ML), this research study proposes a unique strategy for addressing security issues in Internet of Things (IoT) networks. This technique seeks to address the challenges that are associated with these IoT networks. The use of intrusion detection systems (IDS) makes this technique feasible. The purpose of this research is to simultaneously improve the present level of security in ecosystems that are connected to the Internet of Things (IoT) while simultaneously ensuring the effectiveness of identifying and mitigating possible threats. The frequency of cyber assaults is directly proportional to the increasing number of people who rely on and utilize the internet. Data sent via a network is vulnerable to interception by both internal and external parties. Either a human or an automated system may launch this attack. The intensity and effectiveness of these assaults are continuously rising. The difficulty of avoiding or foiling these types of hackers and attackers has increased. There will occasionally be individuals or businesses offering IDS solutions who have extensive domain expertise. These solutions will be adaptive, unique, and trustworthy. IDS and cryptography are the subjects of this research. There are a number of scholarly articles on IDS. An investigation of some machine learning and deep learning techniques was carried out in this research. To further strengthen security standards, some cryptographic techniques are used. Problems with accuracy and performance were not considered in prior research. Furthermore, further protection is necessary. This means that deep learning can be even more effective and accurate in the future.
Authored by Mohammed Mahdi
Active cyber defense mechanisms are necessary to perform automated, and even autonomous operations using intelligent agents that defend against modern/sophisticated AI-inspired cyber threats (e.g., ransomware, cryptojacking, deep-fakes). These intelligent agents need to rely on deep learning using mature knowledge and should have the ability to apply this knowledge in a situational and timely manner for a given AI-inspired cyber threat. In this paper, we describe a ‘domain-agnostic knowledge graph-as-a-service’ infrastructure that can support the ability to create/store domain-specific knowledge graphs for intelligent agent Apps to deploy active cyber defense solutions defending real-world applications impacted by AI-inspired cyber threats. Specifically, we present a reference architecture, describe graph infrastructure tools, and intuitive user interfaces required to construct and maintain large-scale knowledge graphs for the use in knowledge curation, inference, and interaction, across multiple domains (e.g., healthcare, power grids, manufacturing). Moreover, we present a case study to demonstrate how to configure custom sets of knowledge curation pipelines using custom data importers and semantic extract, transform, and load scripts for active cyber defense in a power grid system. Additionally, we show fast querying methods to reach decisions regarding cyberattack detection to deploy pertinent defense to outsmart adversaries.
Authored by Prasad Calyam, Mayank Kejriwal, Praveen Rao, Jianlin Cheng, Weichao Wang, Linquan Bai, Sriram Nadendla, Sanjay Madria, Sajal Das, Rohit Chadha, Khaza Hoque, Kannappan Palaniappan, Kiran Neupane, Roshan Neupane, Sankeerth Gandhari, Mukesh Singhal, Lotfi Othmane, Meng Yu, Vijay Anand, Bharat Bhargava, Brett Robertson, Kerk Kee, Patrice Buzzanell, Natalie Bolton, Harsh Taneja
This paper introduces a novel AI-driven ontology-based framework for disease diagnosis and prediction, leveraging the advancements in machine learning and data mining. We have constructed a comprehensive ontology that maps the complex relationships between a multitude of diseases and their manifested symptoms. Utilizing Semantic Web Rule Language (SWRL), we have engineered a set of robust rules that facilitate the intelligent prediction of diseases, embodying the principles of NLP for enhanced interpretability. The developed system operates in two fundamental stages. Initially, we define a sophisticated class hierarchy within our ontology, detailing the intricate object and data properties with precision—a process that showcases our application of computer vision techniques to interpret and categorize medical imagery. The second stage focuses on the application of AI-powered rules, which are executed to systematically extract and present detailed disease information, including symptomatology, adhering to established medical protocols. The efficacy of our ontology is validated through extensive evaluations, demonstrating its capability to not only accurately diagnose but also predict diseases, with a particular emphasis on the AI methodologies employed. Furthermore, the system calculates a final risk score for the user, derived from a meticulous analysis of the results. This score is a testament to the seamless integration of AI and ML in developing a user-centric diagnostic tool, promising a significant impact on future research in AI, ML, NLP, and robotics within the medical domain.
Authored by K. Suneetha, Ashendra Saxena
Artificial intelligence (AI) has emerged as one of the most formative technologies of the century and further gains importance to solve the big societal challenges (e.g. achievement of the sustainable development goals) or as a means to stay competitive in today’s global markets. The role as a key enabler in many areas of our daily life leads to a growing dependence, which has to be managed accordingly to mitigate negative economic, societal or privacy impacts. Therefore, the European Union is working on an AI Act, which defines concrete governance, risk and compliance (GRC) requirements. One of the key demands of this regulation is the operation of a risk management system for High-Risk AI systems. In this paper, we therefore present a detailed analysis of relevant literature in this domain and introduce our proposed approach for an AI Risk Management System (AIRMan).
Authored by Simon Tjoa, Peter Temper, Marlies Temper, Jakob Zanol, Markus Wagner, Andreas Holzinger
In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
Conventional approaches to analyzing industrial control systems have relied on either white-box analysis or black-box fuzzing. However, white-box methods rely on sophisticated domain expertise, while black-box methods suffers from state explosion and thus scales poorly when analyzing real ICS involving a large number of sensors and actuators. To address these limitations, we propose XAI-based gray-box fuzzing, a novel approach that leverages explainable AI and machine learning modeling of ICS to accurately identify a small set of actuators critical to ICS safety, which result in significant reduction of state space without relying on domain expertise. Experiment results show that our method accurately explains the ICS model and significantly speeds-up fuzzing by 64x when compared to conventional black-box methods.
Authored by Justin Kur, Jingshu Chen, Jun Huang
AI technology is widely used in different fields due to the effectiveness and accurate results that have been achieved. The diversity of usage attracts many attackers to attack AI systems to reach their goals. One of the most important and powerful attacks launched against AI models is the label-flipping attack. This attack allows the attacker to compromise the integrity of the dataset, where the attacker is capable of degrading the accuracy of ML models or generating specific output that is targeted by the attacker. Therefore, this paper studies the robustness of several Machine Learning models against targeted and non-targeted label-flipping attacks against the dataset during the training phase. Also, it checks the repeatability of the results obtained in the existing literature. The results are observed and explained in the domain of the cyber security paradigm.
Authored by Alanoud Almemari, Raviha Khan, Chan Yeun
In recent years, the security of AI systems has drawn increasing research attention, especially in the medical imaging realm. To develop a secure medical image analysis (MIA) system, it is a must to study possible backdoor attacks (BAs), which can embed hidden malicious behaviors into the system. However, designing a unified BA method that can be applied to various MIA systems is challenging due to the diversity of imaging modalities (e.g., X-Ray, CT, and MRI) and analysis tasks (e.g., classification, detection, and segmentation). Most existing BA methods are designed to attack natural image classification models, which apply spatial triggers to training images and inevitably corrupt the semantics of poisoned pixels, leading to the failures of attacking dense prediction models. To address this issue, we propose a novel Frequency-Injection based Backdoor Attack method (FIBA) that is capable of delivering attacks in various MIA tasks. Specifically, FIBA leverages a trigger function in the frequency domain that can inject the low-frequency information of a trigger image into the poisoned image by linearly combining the spectral amplitude of both images. Since it preserves the semantics of the poisoned image pixels, FIBA can perform attacks on both classification and dense prediction models. Experiments on three benchmarks in MIA (i.e., ISIC-2019 [4] for skin lesion classification, KiTS-19 [17] for kidney tumor segmentation, and EAD-2019 [1] for endoscopic artifact detection), validate the effectiveness of FIBA and its superiority over stateof-the-art methods in attacking MIA models and bypassing backdoor defense. Source code will be available at code.
Authored by Yu Feng, Benteng Ma, Jing Zhang, Shanshan Zhao, Yong Xia, Dacheng Tao
Existing defense strategies against adversarial attacks (AAs) on AI/ML are primarily focused on examining the input data streams using a wide variety of filtering techniques. For instance, input filters are used to remove noisy, misleading, and out-of-class inputs along with a variety of attacks on learning systems. However, a single filter may not be able to detect all types of AAs. To address this issue, in the current work, we propose a robust, transferable, distribution-independent, and cross-domain supported framework for selecting Adaptive Filter Ensembles (AFEs) to minimize the impact of data poisoning on learning systems. The optimal filter ensembles are determined through a Multi-Objective Bi-Level Programming Problem (MOBLPP) that provides a subset of diverse filter sequences, each exhibiting fair detection accuracy. The proposed framework of AFE is trained to model the pristine data distribution to identify the corrupted inputs and converges to the optimal AFE without vanishing gradients and mode collapses irrespective of input data distributions. We presented preliminary experiments to show the proposed defense outperforms the existing defenses in terms of robustness and accuracy.
Authored by Arunava Roy, Dipankar Dasgupta
State of the art Artificial Intelligence Assurance (AIA) methods validate AI systems based on predefined goals and standards, are applied within a given domain, and are designed for a specific AI algorithm. Existing works do not provide information on assuring subjective AI goals such as fairness and trustworthiness. Other assurance goals are frequently required in an intelligent deployment, including explainability, safety, and security. Accordingly, issues such as value loading, generalization, context, and scalability arise; however, achieving multiple assurance goals without major trade-offs is generally deemed an unattainable task. In this manuscript, we present two AIA pipelines that are model-agnostic, independent of the domain (such as: healthcare, energy, banking), and provide scores for AIA goals including explainability, safety, and security. The two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and Requirements Feedback Scoring Pipeline (RFSP) are scalable and tested with multiple use cases, such as a water distribution network and a telecommunications network, to illustrate their benefits. ALSP optimizes models using a game theory approach and it also logs and scores the actions of an AI model to detect adversarial inputs, and assures the datasets used for training. RFSP identifies the best hyper-parameters using a Bayesian approach and provides assurance scores for subjective goals such as ethical AI using user inputs and statistical assurance measures. Each pipeline has three algorithms that enforce the final assurance scores and other outcomes. Unlike ALSP (which is a parallel process), RFSP is user-driven and its actions are sequential. Data are collected for experimentation; the results of both pipelines are presented and contrasted.
Authored by Md Sikder, Feras Batarseh, Pei Wang, Nitish Gorentala